An asymptotic approach for the statistical thermodynamics of certain model systems

Michael R. Buche<sup>1,\*,</sup>

Scott J. Grutzik<sup>1,D</sup>

Meredith N. Silberstein<sup>2,</sup>

APS March Meeting 2023 March 5th - 10th, 2022, Las Vegas, NV, USA

<sup>1</sup> Sandia National Laboratories <sup>2</sup> Cornell University

\*<u>mrbuche@sandia.gov</u>





Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2023-12966C

## 2 Abstract

#### Configuration integrals

- Vital for analytic modeling in statistical thermodynamics
- Difficult, if not impossible to obtain in most cases

#### Certain model systems

Approximated by replacing steep potentials with athermal rigid constraints

Often inadequate, especially when modeling molecular stretching

#### An asymptotic approach

Systematically builds upon the approximation provided by the (rigid) reference system

67

- Low-temperature analog of Zwanzig's high-temperature perturbation theory [1]
- Here, the asymptotic theory [2] and several successful applications [3-8] are reviewed

## **3 Outline**

#### Theoretical background

- General asymptotic theory
- Three-dimensional harmonic oscillator

#### > Applications and results

- Freely jointed chain models with extensible links
  Statistical mechanical model for crack growth
  Modeling single-molecule stretching experiments
- Conclusion
- > Acknowledgements

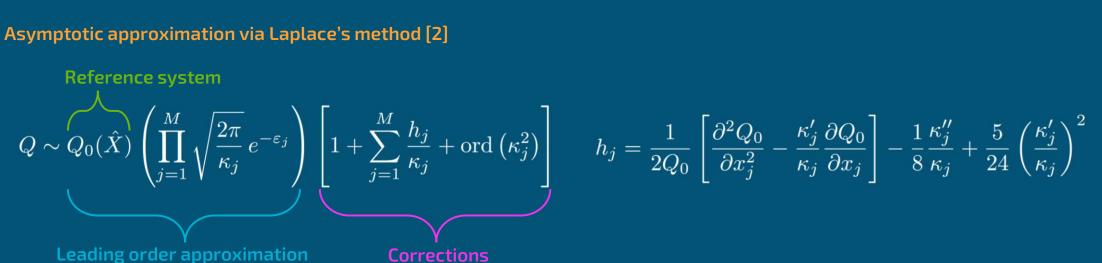
## 4 General asymptotic theory

Canonical partition function (full system)

 $Q = \int d\Gamma_0 \int dX \ e^{-\beta H_0(\Gamma_0;X)} \ e^{-\beta U_1(X)}$ 

Rewrite canonical partition function (full system)

 $Q = \int dX \ Q_0(X) \ e^{-\beta U_1(X)}$ 



Canonical partition function (reference system) $Q_0(X) = \int d\Gamma_0 \,\, e^{-eta H_0(\Gamma_0;X)}$ 

Steep potentials ( $|\varepsilon_j| \gg 1$ ,  $\kappa_j \gg 1$ ) minimized at  $\hat{x}_j$  $U_1(X) = \sum_{i=1}^M u_i(x_i) \qquad \varepsilon_j \equiv \beta u_j(\hat{x}_j) \qquad \kappa_j \equiv \beta u_j''(\hat{x}_j)$  

## Three-dimensional harmonic oscillator

#### Asymptotic approximation, valid for $\kappa \gg 1$

 $q \sim q_0(\ell_b) \,\ell_b \sqrt{\frac{2\pi}{\kappa}} \left[ 1 + \frac{1}{\kappa} \right]$ 

Reference system (rigid rotor)  $q_0(\ell)=4\pi\ell^2$ 

Y First order correction (rotation-vibration coupling) Leading order approximation (rigid-rotor-harmonic-oscillator)

#### Compare to the exact result

5

$$q = 4\pi \ell_b^3 \left\{ \frac{e^{-\kappa/2}}{\kappa} + \sqrt{\frac{\pi}{2\kappa}} \left( 1 + \frac{1}{\kappa} \right) \left[ 2 - \operatorname{erfc} \left( \sqrt{\frac{\kappa}{2}} \right) \right] \right\}$$
$$= q_0(\ell_b) \ell_b \sqrt{\frac{2\pi}{\kappa}} \left[ 1 + \frac{1}{\kappa} + \operatorname{ord} \left( e^{-\kappa/2} \right) \right]$$

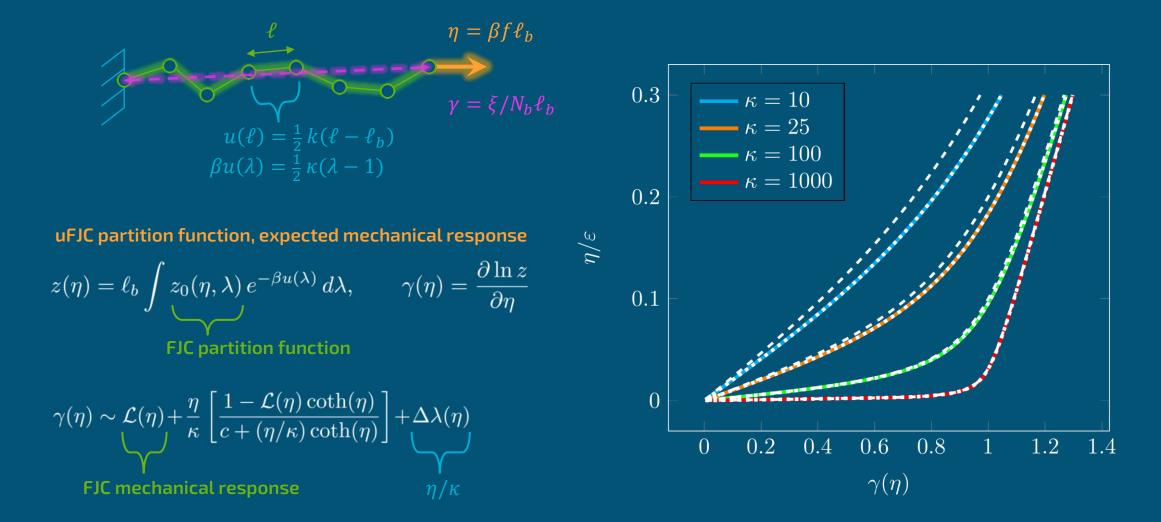
 $u(\ell) = \frac{1}{2}k(\ell - \ell_b)$  $\beta u(\lambda) = \frac{1}{2}\kappa(\lambda - 1)$ 

For some anharmonic potential

- Same leading order approximation
- Anharmonic vibration corrections at first order
- Additional terms not transcendentally small

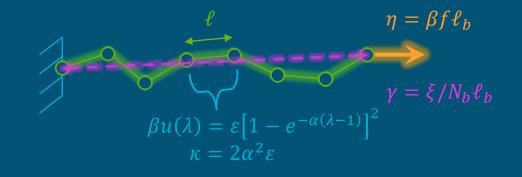
Additional corrections are transcendentally small in this case

## <sup>6</sup> Freely jointed chain models with extensible links



[3] Buche, Michael R., Silberstein, Meredith N., and Grutzik, Scott J. Freely jointed chain models with flexible links. <u>Physical Review E 106 (2), 024502 (2022)</u>.
 [4] Buche, Michael R. and Grutzik, Scott J. uFJC: the Python package for the uFJC single-chain model. <u>Zenodo (2022)</u>.

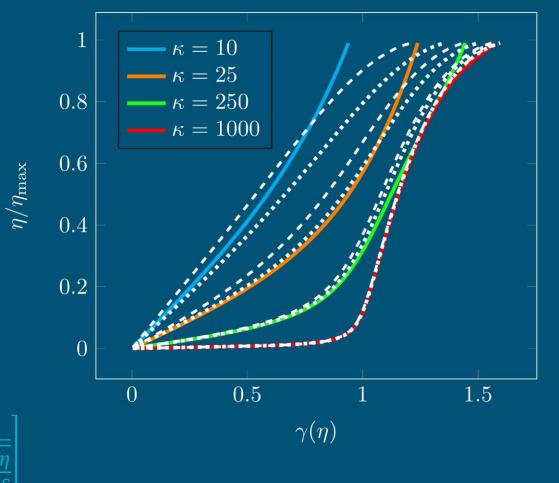
## 7 Freely jointed chain models with extensible links



uFJC partition function, expected mechanical response

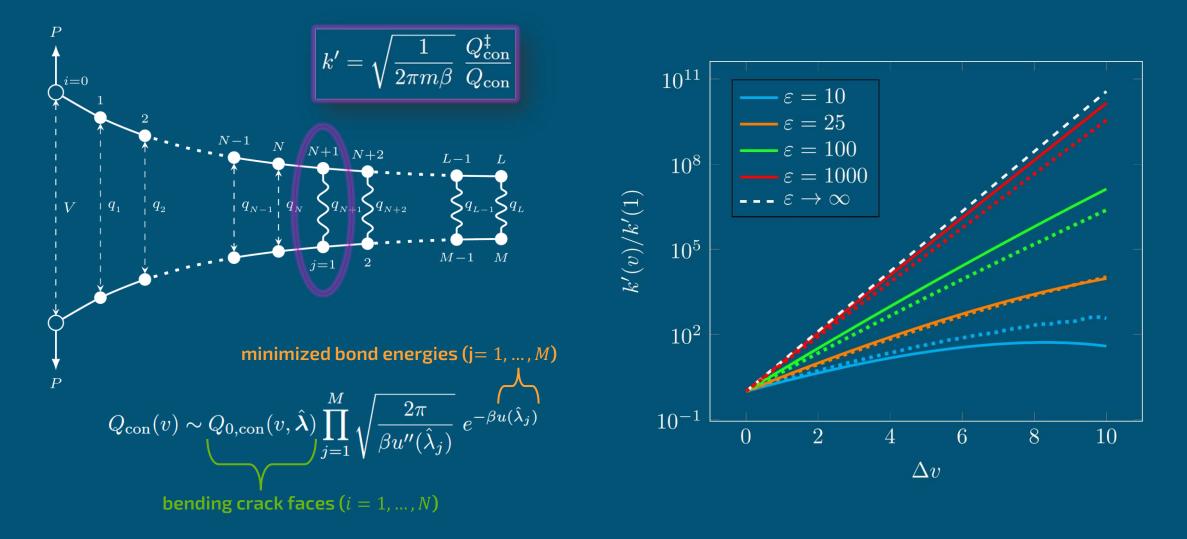
$$z(\eta) = \ell_b \int z_0(\eta, \lambda) e^{-\beta u(\lambda)} d\lambda, \qquad \gamma(\eta) = \frac{\partial \ln z}{\partial \eta}$$
FJC partition function

$$\gamma(\eta) \sim \mathcal{L}(\eta) + \frac{\eta}{\kappa} \left[ \frac{1 - \mathcal{L}(\eta) \coth(\eta)}{c + (\eta/\kappa) \coth(\eta)} \right] + \Delta \lambda(\eta)$$
  
FJC mechanical response 
$$\frac{1}{\alpha} \ln \left[ \frac{2}{1 + \sqrt{1 - \frac{1}{\alpha}}} \right]$$



[3] Buche, Michael R., Silberstein, Meredith N., and Grutzik, Scott J. Freely jointed chain models with flexible links. <u>Physical Review E 106 (2), 024502 (2022)</u>.
 [4] Buche, Michael R. and Grutzik, Scott J. uFJC: the Python package for the uFJC single-chain model. <u>Zenodo (2022)</u>.

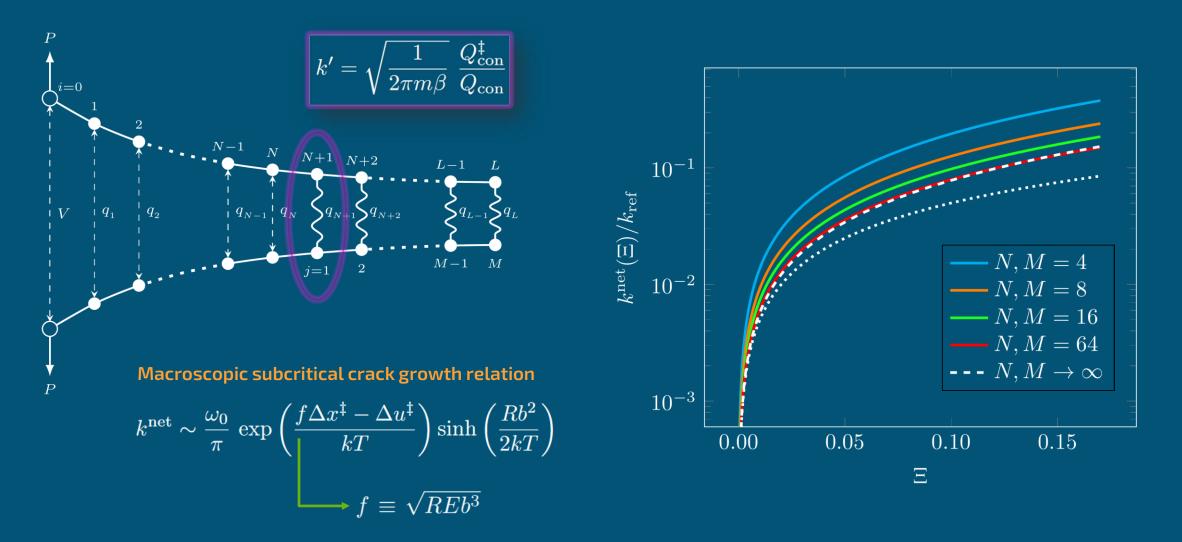
#### Statistical mechanical model for crack growth



[5] Buche, Michael R. and Grutzik, Scott J. Statistical mechanical model for crack growth. <u>Physical Review E 109 (1), 015001 (2024)</u>.
[6] Buche, Michael R. and Grutzik, Scott J. statMechCrack: statistical mechanical models for crack growth. <u>Zenodo (2023)</u>.

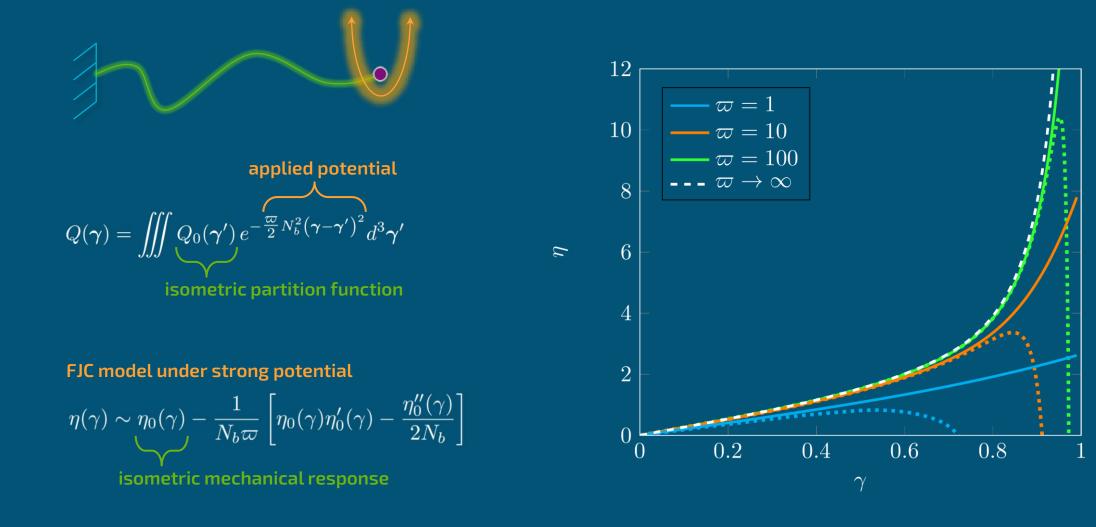
#### Statistical mechanical model for crack growth

9



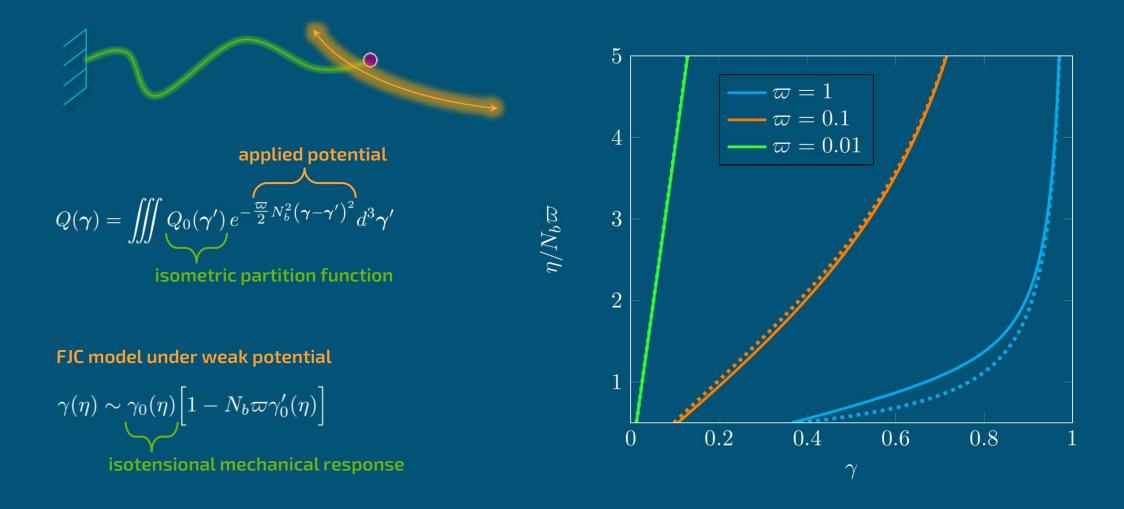
[5] Buche, Michael R. and Grutzik, Scott J. Statistical mechanical model for crack growth. <u>Physical Review E 109 (1), 015001 (2024)</u>.
 [6] Buche, Michael R. and Grutzik, Scott J. statMechCrack: statistical mechanical models for crack growth. <u>Zenodo (2023)</u>.

## **Modeling single-molecule stretching experiments**



[7] Buche, Michael R. and Jessica, Rimsza M. Modeling single-molecule stretching experiments using statistical thermodynamics. <u>Physical Review E 108 (6), 064503 (2023)</u>.
 [8] Buche, Michael R. Polymers Modeling Library. <u>Zenodo (2023)</u>.

## **Modeling single-molecule stretching experiments**



[1] Zwanzig, Robert W. High-temperature equation of state by a perturbation method. I. Nonpolar gases. <u>J. Chem. Phys. 22, 1420 (1954)</u>.

[7] Buche, Michael R. and Jessica, Rimsza M. Modeling single-molecule stretching experiments using statistical thermodynamics. Physical Review E 108 (6), 064503 (2023).

[8] Buche, Michael R. Polymers Modeling Library. Zenodo (2023).

## 12 **Conclusion**

#### > An asymptotic approach for statistical thermodynamics

- Steep potentials (low temperatures)
- Build upon a more easily solvable reference system

#### Successful applications

- Freely jointed chain models with extensible links
- Statistical mechanical model for crack growth
- Modeling single-molecule stretching experiments

#### Future work

- Many more model systems
- Quantum statistical thermodynamics

## **Acknowledgements**







National Nuclear Security Administration

# **CornellEngineering** Sibley School of Mechanical and Aerospace Engineering

- [1] Zwanzig, Robert W. High-temperature equation of state by a perturbation method. I. Nonpolar gases. J. Chem. Phys. 22, 1420 (1954).
- [2] Buche, Michael R. Fundamental Theories for the Mechanics of Polymer Chains and Networks. Cornell University (2021).
- 3] Buche, Michael R., Silberstein, Meredith N., and Grutzik, Scott J. Freely jointed chain models with flexible links. Physical Review E **106** (2), 024502 (2022).
- [4] Buche, Michael R. and Grutzik, Scott J. uFJC: the Python package for the uFJC single-chain model. Zenodo (2022).
- [5] Buche, Michael R. and Grutzik, Scott J. Statistical mechanical model for crack growth. <u>Physical Review E **109** (1), 015001 (2024)</u>.
- [6] Buche, Michael R. and Grutzik, Scott J. statMechCrack: statistical mechanical models for crack growth. Zenodo (2023).
- 7] Buche, Michael R. and Jessica, Rimsza M. Modeling single-molecule stretching experiments using statistical thermodynamics. Physical Review E 108 (6), 064503 (2023).
- [8] Buche, Michael R. Polymers Modeling Library. <u>Zenodo (2023)</u>.

This material is based in part upon work supported by the U.S. National Science Foundation under Grant No. CAREER-1653059. This work was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.