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2 Abstract

Statistical thermodynamics is a powerful tool.
Only a few axioms and equations, but a lot of examples.
Allows constitutive relations to be obtained from molecular physics.
Nuances from ensemble and system size, state variables and equilibrium, etc.
Applicable to quantum mechanical systems, of course.

Statistical thermodynamics is sometimes the right tool.
Molecular stretching, some constitutive modeling, subcritical crack growth.
Performs poorly when underlying axioms are invalid.
Performs poorly when the model system is not representative.

Statistical thermodynamics research continues.
It has historically has focused on computational and approximation techniques.
New applications and clever model system choices provide further motivation.



Background



4 Statistical mechanics

Statistical mechanics:
Probabilistic interpretation of mechanics through f(p, q, t).
State variables are all atomic positions/momenta, time.

df

dt
=

∂f

∂t
+

3N∑
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∂qj
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)
= 0

Fundamentally correct, but can be extremely unwieldy
Statistical thermodynamics:

Statistical features do not evolve in time (equilibrium).
Severely reduced number of state variables (ensemble).
Macroscopic thermodynamics from constituent particles.



5 Statistical thermodynamics

Partition functions:
Probability normalization for all calculations.
Compute once, if possible, for all states.
Configuration integral is typically impossible.
Connection to thermodynamics by inference.
Laplace transforms change the ensemble.

Difference from macroscopic thermodynamics:
Non-state variables are averages and fluctuate.
Ensemble-dependent results for small systems.
Calculate averages of molecular variables.
Things like temperature become nebulous.
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∫
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∫
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6 Statistical thermodynamics

Fundamental axioms [1]:
Principle of equal a priori probabilities.
The entropy is maximized at equilibrium.
The entropy takes a specific form.
Gibbs’ postulate, (in)distinguishability of particles.

Two approximation techniques:
If U = U0 + U1, where U1 is weak (U1 ≪ kT ) [2], i.e. derive van der Waals.
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If U = U0 + U1, where U1 is steep (U1 ≫ kT and narrow) [3], i.e. correct RRHO.

A ∼ A0 + U1
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Applications



8 Molecular stretching

Freely jointed chain models with extensible links [4].
Ensemble is links Nb, force f , temperature T .
Resistance due to entropy and link stretching.
Analytic relations using asymptotic approach.

γ(η) ∼ L(η) + η

κ

[
1− L(η) coth(η)
c+ (η/κ) coth(η)

]
+∆λ(η)

Device effects in these stretching experiments [5].
No device can apply a constant force or
extension due to finite stiffness and size.
Either ensemble provides a zeroth order
approximation in certain device limits.
Weak and steep theories provide corrections.
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9 Constitutive modeling

Triple network elastomer, sacrificial cross-links [6].
Single chains to bulk constitutive model [7].
Largely successful across model types [8–10].

Rate-dependence and viscous dissipation.
Possible failure of underling physics.

Failure of transition-state-like theories.
Intermolecular interactions not tangible.

Definite failure of resulting model forms.
Always some useless flavor of e−kt.
Phenomenological models are better.

Is non-equilibrium statistical mechanics compatible
with thermodynamic constitutive theory?
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10 Subcritical crack growth

Statistical mechanical model for crack growth [11].
Harmonic bending, Morse potential bonds.
Applied displacement or force ensembles.
Velocity from transition state theory rate.
Analytic solutions using assumptions:

Big system, steep potential, small stretch.
v

b
∼ ω0

π
exp

(
f∆x‡ −∆u‡

kT

)(
Rb2

2kT

)
Similar to before, but better parameters now.
SLS glass in water; no water in model [12, 13].

Possible explanation for v overestimation.
Future work: environment, dimensions.

0.3 0.4 0.5 0.6

10−9

10−7

10−5

10−3

KI [MPa
√
m]

v
[m

/s
]

T = 2◦C
T = 25◦C
T = 90◦C



11 Functional integrals

Infinite degrees of freedom.
Continuous limit of discrete particles.
Integrate over functions instead of numbers.
Absolute free energies are not defined.

Asymptotic approach still applies [14].
Worm-like polymer chain models [15].
Nanoscale origami models [16].
SPECtacular has similar expansions [17].
Possibly applicable to quantum field theory.

Specifically, the path integral formulation.
Looking for a demonstrator problem.

Z =

∫
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∫
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∫
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∞∑
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12 Conclusion

Statistical thermodynamics is a powerful tool.
Only a few axioms and equations, but a lot of examples.
Allows constitutive relations to be obtained from molecular physics.
Nuances from ensemble and system size, state variables and equilibrium, etc.
Applicable to quantum mechanical systems, of course.

Statistical thermodynamics is sometimes the right tool.
Molecular stretching, some constitutive modeling, subcritical crack growth.
Performs poorly when underlying axioms are invalid.
Performs poorly when the model system is not representative.

Statistical thermodynamics research continues.
It has historically has focused on computational and approximation techniques.
New applications and clever model system choices provide further motivation.
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