
Challenges and Strategies for Testing Automation
Practices at Sandia National Laboratories

Miranda Mundt*
Sandia National Laboratories

Albuquerque, NM, USA
mmundt@sandia.gov

Jonathan Bisila*

Sandia National Laboratories
Albuquerque, NM, USA

jbisila@sandia.gov

Reed Milewicz*

Sandia National Laboratories
Albuquerque, NM, USA

rmilewi@sandia.gov

Joshua Teves*

Sandia National Laboratories
Albuquerque, NM, USA

jbteves@sandia.gov

Michael Buche
Sandia National Laboratories

Albuquerque, NM, USA

Jonathan Compton
Sandia National Laboratories

Albuquerque, NM, USA

Jason M. Gates
Sandia National Laboratories

Albuquerque, NM, USA

Kirk Landin
Sandia National Laboratories

Albuquerque, NM, USA

Gerald Lofstead
Sandia National Laboratories

Albuquerque, NM, USA

Abstract—Sandia National Laboratories is a premier United
States national security laboratory which develops science-based
technologies in areas such as nuclear deterrence, energy pro-
duction, and climate change. Computing plays a key role in its
diverse missions, and within that environment, Research Software
Engineers (RSEs) and other scientific software developers utilize
testing automation to ensure quality and maintainability of their
work. We conducted a Participatory Action Research study to ex-
plore the challenges and strategies for testing automation through
the lens of academic literature. Through the experiences collected
and comparison with open literature, we identify these challenges
in testing automation and then present strategies for mitigation
grounded in evidence-based practice and experience reports that
other, similar institutions can assess for their automation needs.

Index Terms—automation, testing, scientific software develop-
ment, research software engineering

I. INTRODUCTION

US national laboratories perform fundamental research and
development in the national interest, and computing is increas-
ingly essential to supporting the needs of these efforts [1]. This
is highlighted by the recent Department of Energy request for
information on software stewardship [2] and the creation of
the Exascale Computing Project1. Paired with this is the need
for quality software to ensure quality results – a necessity
enabled by regular testing [3]. Automation of software testing
using practices such as DevOps is common practice in industry
and is being adopted into scientific software development as
it is necessary in order to meet the demands of the complex
problems that it solves [4]. In order to even use Commercial

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

Presented at USRSE2023, Chicago, IL, October 16-18, 2023.
* The first four authors contributed equally to this work.
1https://www.exascaleproject.org

Off-the-Shelf (COTS) products such as Jenkins2 to automate
testing, it is necessary to train the workforce to use those tools.
Even with these tools, there may be gaps in functionality for
research software engineering.

With this in mind, we propose two questions to investigate:

• RQ1: What are the challenges experienced by Research
Software Engineers (RSEs) in testing automation at a
large US national laboratory?

• RQ2: What strategies have been employed by Research
Software Engineers (RSEs) to address these challenges?

In order to begin answering these questions, we use a
Participatory Action Research (PAR) study to gain a foothold
on answering these questions at Sandia National Laboratories
(SNL). By studying RSEs and their practices at SNL, we gain
information on at least one national laboratory and present a
framework for conducting similar studies at other institutions
for the purpose of identifying practices employed by RSEs
more broadly.

In this paper, we illustrate the nature of the heterogeneous
scientific software environment at SNL. We then highlight
some of the current solutions and best practices employed by
RSEs with regards to automation testing. We discuss some
of the open challenges in automation testing for scientific
software development and present strategies to mitigate these
challenges. Throughout this study, we ground our findings
in the open literature, comparing and contrasting our envi-
ronment, solutions, and challenges with those of the larger
research computing community.

II. BACKGROUND

Automation has long been a topic of conversation in soft-
ware development. Boehm argued extensively in the 1980’s
for there to be a push to automate repetitive, labor-intensive

2https://www.jenkins.io/

SAND2024-03930C

https://orcid.org/0000-0002-5283-2138
https://orcid.org/0009-0000-9618-5836
https://orcid.org/0000-0002-1701-0008
https://orcid.org/0000-0002-7767-0067
https://orcid.org/0000-0002-4697-2919


tasks in order to improve overall developer and project pro-
ductivity [5], [6]. In the modern era, automation has taken
a prominent role in software development. It enables re-
producibility through automated workflows [7], verification
through testing [8], better interdisciplinary teaming [9], and is
seen as integral to successful Agile software development [10].

Within computational science and engineering (CSE), au-
tomation has a mixed history. Heaton and Carver, in a sys-
tematic literature review, found that it is widely claimed that
“Scientific software developers benefit from using a wide
range of testing practices from software engineering,” up to
and including automation for testing, refactoring, and docu-
mentation’ [11]. However, they also note, “The effectiveness
of the testing practices currently used by scientific software
developers is limited.” According to a recent study, Carver et
al. determined that, in a typical mixed group of researchers
and developers, only half have formal software engineering
training, and only a quarter have time for further professional
development [12].

To add another layer of complexity, SNL has a highly
heterogeneous scientific software environment. Depending on
the project and its collaborators, a CSE team may use GitHub,
GitLab, and Jenkins while attempting to support several dif-
ferent compiler and operating system versions per piece of
software. This is not entirely unique to national laboratories;
in one case study, Karhu et al. detailed a team that had
failed on multiple occasions to implement automated testing
because “[t]he systems were large and complex, and also
depended on other suppliers’ systems. Especially interoper-
ability testing was found difficult because often it could only
be done at the customer’s site.” [13] Complicating matters
further, communications methods are also often disparate,
with unclear protocols on which platform to use with whom
and for what. For instance, a single project may use email,
Microsoft Teams, Slack, Mattermost, tapping colleagues on
the shoulder, or other methods to communicate with internal
and external collaborators. Teams may collaborate either in
person or remotely, leading to seminars on best practices for
effective communication in a dispersed teaming environment3.
This is even mentioned as a barrier to open source software
development generally [14].

A primary role of RSEs is to improve quality and productiv-
ity within scientific software development. In the foundational
paper on RSEs, Baxter et al. describe RSEs as those who
“come from a research background but [are] also skilled
software developer[s], and relish challenge of not just de-
veloping code to solve a problem but doing it well.” [15]
Maimone describes RSEs at Northwestern University as pro-
viding knowledge of “version control, testing, deployment,
software design, distribution, documentation, automation, and
more” to research software development [16]. Cosden de-
scribes something similar within the Princeton University RSE
Group, which also provides training for research scientists on
software engineering practices including automation, version

3https://www.exascaleproject.org/strategies-for-working-remotely/

control, and performance [17]. Within SNL, the Department
of Software Engineering and Research employs a “Research,
Develop, and Deploy” pipeline that aims to provide assistance
throughout the software development lifecycle [18].

III. METHODOLOGY

For this paper, we conducted a participatory action research
(PAR) study. These studies focus on direct participation of
the authors as opposed to secondary participation, as with
interviewing a passive participant [19]. The inspiration for this
technique comes from the work of Lutter and Seaman [20],
which the authors have used previously to analyze DevOps
successes and challenges within SNL [21]. Using this method,
we analyzed our experiences as RSEs in scientific software
development teams to identify key themes. We then compared
these themes to those found in the wider body of literature
about the use of automation practices across both industry and
scientific software development.

The main authors recruited participants for the study by
reaching out to the Sandia Research Software Engineering
Community of Practice (RSECOP) and other potentially in-
terested departments at SNL (about 150 staff members in
total). Interested participants were asked to detail their ex-
periences with automation as researchers and software practi-
tioners (through stories, data, opinions, etc.). The recruitment
email included a list of topics of interest such as testing,
pipelines, how decisions were made regarding automation
tools, challenges and successes, and more. Interested parties
were then advised to add their experience reports to a web-
based, collaborative wiki page. This page included guidelines
for potential contributors, which included a request for details
on the underlying scientific domain as well as the automation
tools in use. Recruitment yielded a total of seven participants,
who together produced a set of eight stories that detail a
selection of established practices for testing automation at
SNL. Two authors did not contribute stories but collaborated
in the analysis of the other experience reports to minimize
bias and provide objective input. We present those stories in
Section IV.

To better understand how our experiences map to those
of RSEs and other practitioners outside of SNL, we analyze
these stories through the lens of literature surrounding software
quality and automation practices. In particular, we compare to
several literature reviews that speak to both the impediments
for testing automation [22] and on improving test automation
maturity [23]. The results of this analysis can be found in
Section V.

IV. RESULTS

Following the collection of the stories, we identified four
overarching themes: continuous integration, heterogeneous
computing environment, interdisciplinary collaboration re-
quirements, and lack of professionalization of software engi-
neering practices. We present the results of those themes here,
with a more in-depth discussion in Section V.



A. Continuous Integration

Continuous Integration (CI) is a “development practice ...
in which members of a team integrate and merge development
work (e.g., code) frequently [and] includes automated software
building and testing.” [24] In this practice, a team normally
does work incrementally, generally targeting a single change or
related changes before merging them into the main production
code base when completed. As part of this process, the
incremental changes are automatically tested to ensure no
breaking changes enter the main code base.

Historically, software development followed a waterfall
method [25]. In 2001, the Agile methodology was introduced
– a model in which a product is continuously improved in
short spurts with regular feedback from the customer [26].
Following this shift to continuous improvement, DevOps was
introduced as a concept in late 2009 [27]. This extension
of Agile puts emphasis on CI in the software development
lifecycle, including a particular focus on the automation of
repetitive tasks such as testing.

CI was mentioned in most of the experience reports. As one
author details:

� For one of my projects, we have the challenge of
needing a specific dataset, with a specific environ-
ment, with a specific set of code we have written to
support analysis. We found that using GitLab CI/CD
pipelines and pytest with nbmake makes this a lot
easier. In particular, this accomplishes two things for
us. One, we can build Docker containers with exactly
the right Python environments we need, the services
attached as a microservice, and the data embedded
in the container. Two, our example notebooks for our
analytics can double as “tests” in the CI/CD pipeline
by using nbmake and pytest! – S1

This author utilizes automated pipelines and testing pack-
ages to streamline the process of generating and releasing a
dataset and its analysis. The pipeline expedites a previously
manual process while also incorporating tools to containerize
the results for rapid and seamless deployment to stakeholders.

Of note, this author details using a mix of tools to achieve
the goal. This is also reflected in many of the other authors’
stories (five out of eight), with some taking it a step further
in describing the complex environments across which a single
code must compile, build, and run. For example:

� The development of exascale codes on bleeding-
edge hardware requires testing across a variety of
heterogeneous machines. For each machine, there
may be multiple supported programming environ-
ments, and for each environment, there may be mul-
tiple ways to configure the code. Ensuring the code
clones, configures, builds, tests, installs, and runs
successfully for the plethora of desired permutations
is a daunting task. When considering the testing
of multiple long-lived branches, and the desire to
have both development and production versions of

the CI infrastructure, you’re looking at maintaining
hundreds of jobs. – S3

While CI may help with this task, the sheer volume of
required combinations results in added complexity and main-
tenance. Some may say this is akin to Software Product
Lines (SPL): “a set of software-intensive systems that share
a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed
way.” [28] While SNL can be argued to have a particular
mission or market segment (e.g., national security), they are
not a software development institution. Rather, the software is
a by-product of the mission statement. The same author speaks
to a similar issue for a different project and details the way
the project has stitched together a development pipeline across
multiple CI tools:

� For one project, this means the following:
• The main repository lives out on GitHub for the

sake of collaboration.
• On an internal, more-restricted network, a Jenk-

ins server is used to run CI jobs on a number on
physical machines (high-power servers, HPCs,
test-beds).

• Certain components of the CI infrastructure live
in the main repository on GitHub.

• Other CI components live in additional reposi-
tories on a GitLab instance on an internal, less-
restricted network.

• Parts of the CI infrastructure are tested with
GitLab CI/CD on virtual machines spun up with
OpenStack.

– S5
For this case, the author details a pipeline that, while

providing some functionality, is restrictive due to security
concerns and the requirement to support multi-institution col-
laboration. Results generated on the internal Jenkins server, for
example, can only post “Pass/Fail” on the GitHub repository,
so external collaborators can see if their change fails tests
but cannot see why without requesting more details from a
direct SNL employee. These stitched-together pipelines are
experienced by other authors as well. Another author tells of
their performance testing pipeline:

� Using a mix of tools (GitHub, GitLab, Jenkins,
Python, web servers), we have created an automated
pipeline to run benchmark tests on each change to
the main branch of the repository, add that data to
an archive (that now has over two years’ worth of
previous runs), and analyze the data over time to find
performance gains and losses. This data is published
via plots and tables to a website, accessible publicly,
with notifications of significant variations appearing
at the top of the portal.
Due to issues with access to hardware and web-
hosting services, plus sensitive or proprietary infor-
mation in some of the tests, this pipeline runs across



a series of services. The code is hosted on GitHub;
the raw data archive is hosted on an internal [SNL]
GitLab instance; the performance test suite runs on
Jenkins; the website is administered by a small team
and is likely to be decommissioned, if possible, in
the near future. – S8

While CI has been overall beneficial to the authors, the
necessity to piece together unique toolchains to work around
and satisfy corporate policy and external collaborators has
effected extra complexity. This leads to the next theme - the
heterogeneity of the SNL computational science and engineer-
ing environment.

B. Heterogeneous Computing Environment

By heterogeneous, we mean to say that software developers
at SNL experience a computationally focused system wherein
the resources available and the resources required are heavily
variable depending on what and where a problem is being
solved. In other words, the environment requires support for
multiple institutions, software languages, tools, or hardware,
and a diverse scientific computing staff with varied expertise
both in software and research domains, an experience detailed
by other RSE groups across national institutions [29]. Several
authors have experienced struggles and successes with regards
to the heterogeneous environment within SNL. For example:

� One of the projects I work on is challenging
because it seeks to develop primarily in one language
(Rust) but provides comprehensive APIs in two more
popular/portable languages (Python, Julia). ... The
varying availability and compatibility of tools across
the 3 languages poses a reasonably large challenge.
There are a few lucky cases. For example, Jupyter
notebooks can be written in all 3 languages, allowing
examples to be presented in a similar fashion in each
language, even interactively (Binder). Most cases are
not so lucky. Rust (via Cargo) has dedicated tools
and repositories for testing, packaging, documenta-
tion, but has no LATEX docs support yet; Python (via
Pytest, PyPI) has dedicated tools and repositories
for testing and packaging, but not necessarily for
documentation. Julia has some limited features for
testing, documentation (build tools, but have to host
yourself), and packaging. – S2

Some scientific software developers navigate these chal-
lenges by employing several programming languages or
paradigms. In this author’s case, Rust is intended to provide
performance; the other two languages are integrated for porta-
bility to a wider audience. This intermingling of tools, how-
ever, causes challenges in maintenance and automated testing.
Another author, rather than provide a specific project example,
details the utility of randomized property-based testing for
large, complex systems:

� Coming up with good test coverage for software
systems is extremely difficult and time consuming
because the state-space of software is astronomically

large. Humans are also bad at coming up with tests
that cover the wide range of data values that a
program could process and instead tend to only test
data that is easily human understandable. So how do
we leverage computers to generate more test cases
for us? One approach is Randomized Property-based
Testing.
In randomized property-based testing, the developer
specifies mathematical invariants that a given piece
of code/function/interface must satisfy and provides
some building blocks to allow the testing library
to randomly generate input data. The testing library
then runs that code on randomly-generated test data
to try to find an input that falsifies the invariants.
The number of random tests run is user-configurable,
but is likely in the hundreds or thousands each time
testing is run. – S4

In an attempt to overcome problem complexity and humans’
limited ability to find all potential corner cases, this author
has turned to a relatively unknown procedure for generating
test cases. This has proved generally successful for the author.
For other authors, however, the complexity of attempting to
automate testing for special use cases has been more futile:

� We developed one set of testing routines for
Stitch-IO in Python that focused on ensuring that
things functioned (not quite unit testing, but slightly
more complex). We also had a test written in C that
was supposed to represent how the application works
in practice, but without the physics so it would be
fast.
In spite of both the Python and C tests all working
correctly, the application was having data corruption
issues. The tests should have revealed the source of
the errors, but they did not. After some analysis, we
determined that the C application representation was
not moving through the computational space exactly
as it would for a production run. The simplification
should not have mattered, but it turns out that it did.
– S6

From this story, we see that some attempts to simplify and
accelerate testing (intended to help reduce costs and time to
science) can sometimes have unintended side effects.

C. Interdisciplinary Collaboration Requirements

US national laboratories are well-known for their collabora-
tive efforts. They participate in endeavors such as the Exascale
Computing Project (ECP)4 and the Institute for the Design
of Advanced Energy Systems (IDAES)5. These collaborations
do not come without their difficulties, however. Many of the
authors detailed struggles collaborating with multi-institutional
teams of individuals with diverse educational and technical
backgrounds. As one example:

4https://www.exascaleproject.org/
5https://idaes.org



� We chose these tools for two reasons. One, we
already had a team member who was familiar with
Docker and GitLab CI/CD and the tools that are
supported at [SNL]. Two, we already had all of our
examples in Jupyter notebooks, so we wanted to find
a “testing” solution that would suit what we already
built. – S1

Due to varying levels of expertise in interdisciplinary teams,
some projects have to restrict their tool usage to those that
are already most widely known within the organization. The
authors and their team members, much like those represented
in Carver et al.’s survey, have minimal time for professional
development and training [12]. Other authors have adopted
similar practices to minimize complexity for their teams:

� Creating a “one build script to rule them all”
in Python removes cognitive load from scientific
subject-matter expert developers. Making it easy for
them to do the right thing helps everyone. Also,
providing a means for the team to contribute back to
the “one script” allows flexibility to explore outside
the box while still controlling things as much as
possible. – S3

This author restricts the configuration options to those repre-
sented in a single script. This minimizes overall complexity for
the group and cuts down on the “doesn’t work on my machine”
issue frequently experienced in interdisciplinary, distributed
teams.

Ultimately, however, many of the above issues can be traced
to a lack of professionalization across these teams.

D. Lack of Professionalization
In this context, “professionalization” refers to the process of

“improv[ing] the capability of members to enhance the quality
of service which is provided.” [30] In other words, we use the
term to describe the level of formalized training and capability
of members of a team. In CSE teams, it is rare that all members
have formalized training in software development. [12] Many
learn on the job and from other CSE team members, who
were also self-taught. The authors have a similar experience.
One author talks about what they’ve gleaned about testing in
Machine Learning through the years:

� While unit testing initially seemed less effective
for data science projects than for web applications,
I’ve learned a few things to adapt my testing for
the needs of data science. First, most data science
projects involve plain old software. APIs, functions
with clear returns, internal interfaces, and other
critical portions of code can be tested.
Perhaps the area of machine learning code that feels
hard to unit test at first is what you usually are trying
to do: training and inference. Here are some things
I’ve learned that are pretty close to unit testing (in
that they are fast and exercise the important parts of
your ML system):

• Do an end-to-end test on a single sample such
that your model ingests, trains on, and performs

inference on a single sample. This feels like the
definition of an integration test, but if you have
your sample on the same system where you are
doing the tests, it typically is fast enough not to
be annoying.

• Use seeds to lock down the randomness for most
tests. Remember to set the seed for all pieces
that introduce randomness since it can come
from several different libraries.

• When you want to test that randomness is still
within a certain range, use a delta and subtract
from and check if it is within bounds.

– S7
Though striving to apply software engineering practices, this

author still had to learn on the job how to properly introduce
testing at the correct level in their domain-specific software.
These customized skills are often not taught in a traditional
programs. One author explicitly points this out:

� Randomized property-based testing, despite all
of its successes, is still not widely known in the
software engineering world. I think that is mainly
due to lack of education, and our schools need to
do a better job of including it in their curricula.
It is still viewed as an “Advanced Topic” despite
being very accessible. I think that part of this view
is that successfully employing this testing requires
the developers to formulate invariants, etc., and this
is another skill that is not taught very well in schools.
– S4

This author points out that, even though the process to
automate test generation is accessible, many developers lack
knowledge about specialized testing strategies like formulating
mathematical invariants for numerical codes—a skill rarely
taught in academic software engineering curricula.

V. ANALYSIS

The stories in the above Section paint a picture of the state
of scientific software testing and automation practiced and
implemented by RSEs at SNL. In this Section, we present
the results of our analysis, organized by research question. A
full summary of the stories is presented in Table I.

A. RQ1: Challenges in Testing Automation

When it comes to challenges in test automation, we compare
our experiences to those described by Wiklund et al. [22]
(Table II).

We see a universal alignment of experiences around limita-
tions in externally sourced tools and the existence of a steep
learning curve for testing automation skills. Both of these cate-
gories are represented in some form in every experience report
from the authors. The steep learning curve may be supported
by a result of the survey by Carver et al. speaking to the lack of
formalized training in scientific software developers [12]. The
survey shows that fewer than 50% of members of scientific
software development teams have received any formal training



Story Topic Summary

S1 Testing, Tools Using pytest, nbmake, and Gitlab pipelines to handle a specific dataset and environment.
S2 Testing, Documentation, Mul-

tiple Languages
Using Rust to provide a computational back-end while providing an interface for Python and
Julia.

S3 Automation and Pipeline De-
sign

Creating a pipeline layer and a machine orchestration layer to manage a separation between
the two.

S4 Randomized Property Testing Creating randomized tests that check an invariant property.
S5 Multiple Repositories Distributing software components across two hosting services.
S6 Pytest and C Writing a simplified test with no compute for speed.
S7 Machine Learning, Unit Test-

ing
Testing machine learning code by using small unit tests and checking expected invariants;
running the program to see if it will crash as a basic test.

S8 Performance Testing Creating an automated pipeline to get performance benchmarks.

TABLE I
SUMMARIES OF STORIES GENERATED FROM RECRUITMENT CALL

Challenge Discussed in Stories

(Behavioural) Process adherence S3, S5
(Behavioural) Organizational change –
(Behavioural) Too high expectations S1, S3, S4, S6, S8
(Behavioural) Process deviations S3, S5
(Business and Planning) Cost of ownership and operation S1, S3, S4, S5, S8
(Business and Planning) Automation too expensive for small projects S1
(Business and Planning) Lack of time, people, and funding S1
(Skills) Diversity S1, S2, S3, S5, S8
(Skills) Steep learning curve S1, S2, S3, S4, S5, S6, S7, S8
(Test System) Inadequate development practices S1, S3, S4, S5, S7
(Test System) Testware architecture S1, S4, S3, S5, S8
(Test System) Untested test environment S1, S3, S6
(Test System) Limitations in externally sourced tools S1, S2, S3, S4, S5, S6, S7, S8
(Test System) Environment configuration S3, S5
(System Under Test) SUT Speed S3, S4, S6
(System Under Test) SUT testability S1, S2, S3, S5, S6, S7
(System Under Test) Platform limitations S1, S2, S3, S5, S6, S8

TABLE II
CHALLENGES IN TEST AUTOMATION AS IDENTIFIED BY WIKLUND ET AL. [22]

in software engineering practices; many learn on the job in
between their other responsibilities. Two experience reports
call this out explicitly (S4, S7).

Next in order of substance, there are significant limitations
that result from the “system under the test,” or, in other words,
the infrastructure upon which the automated tests are built. In
six of the eight stories, authors reported difficulties resulting
from platform restrictions and limitations. Many of these
stemmed from an overly complex combination of operating
system, compiler, and software versions, all queued for builds
and tests per each change (S3, S5). Some of these instead
originated in institutional policy and sensitivity restrictions
(S1, S5, S8).

In the next cluster of represented challenges, the authors’
stories (S1, S3, S4, S8) all spoke of having to deal with
too high expectations, the cost of ownership and operation,
challenges with skill diversity, and the testware architecture.
These four topics are likely correlated. For example, a team
with greater skill diversity may also tend to have higher
expectations on what is possible within their testing infras-
tructure. This is reflected in [22] where skill diversity and
too high expectations are mentioned in [22]’s papers marked
[IP1], [IP3], [IP4], [IP10], [IP16], and [IP26]. Likewise, a

complex testware architecture may lead to higher cost of
ownership and operation. Diversity is also linked to inadequate
development practices across these stories, a correlation likely
related to the varied educational background of such diverse,
interdisciplinary teams, a sentiment reflected in numerous
responses to the recent Department of Energy Request for
Information on Software Stewardship [2].

Only one story speaks to the cost associated with automation
(S1). This author, however, represents the smallest of the
projects across all responses; as such, it is unsurprising that
this was called out explicitly in their story.

B. RQ2: Strategies to Address Challenges

In our analysis of the stories, we identified two thematic
arcs that run throughout: (1) adapting testing technologies to
meet CSE project needs and (2) aligning human skills and
relationships to accomplish test-related tasks effectively. By
mapping out the challenges teams face on these fronts in
RQ1, we can recommend evidence-based interventions to help
address those challenges.

To guide our recommendations, we draw upon the findings
of a recent multivocal literature review on strategies for im-
proving test automation maturity by Wang et al. In Table III we



propose a mapping between frequently mentioned challenges
and best practice recommendations supported by the literature.

1) Toolchain Alteration: Wang et al. notes “Test tools” as
a key area in test automation, with best practices of “Select
the right tools” and “Properly use the tools.” [23] These
suggestions seem straightforward when considering a more
homogeneous computing environment. In SNL, however, we
have shown that the environment is layered and complex,
resulting in extra challenges with the tools themselves. When
the available tools do not work on their own, there seem to be
two distinct strategies: combination and creation.

Combination in this context refers to using multiple tools
to offset the inefficiencies in individual tools. For example, in
S8, the author stitches together multiple tools (GitHub, GitLab,
Jenkins) to an overall greater purpose. Wang et al. calls out
“Resources” as a main strategy consideration – that is, consider
the resources required and available. In certain situations, a
single tool may not serve all particular requirements because
of, e.g., security, policy, or external collaboration, to name a
few. We see this in practice in multiple stories but also in
gray and peer-reviewed literature. In a 2017 blog post, the
author debunks the myth that “All automation tools are equal:”
“Every test automation tool has its ’sweet spot’. Depending
on the level of complexity, you may use a blend of test
automation tools to achieve your short and long-term testing
goals. Furthermore, the automation tool(s) you use will vary
depending on the application that you are testing and the skills
of those responsible for testing.” [31]

Creation, on the other hand, is the strategy of making a new
tool to address a gap. In S3, for example, the author made
two API wrappers to enable easier usage of a tool due to
limitations in wider knowledge. This particular strategy is not
directly addressed by Wang et al.; however, in their analysis on
criteria for selecting the right tool, constraints in environment
and organization are contributing factors. In the case of the
authors’ experiences, creation can often be the response to
those constraints.

Calling out several of the recommendations from Table III
(in order of importance):

• Design the system under test for automated testability.
Better test automation starts with the code itself. This
recommendation speaks to inspecting the code and en-
suring that it is testable in a systematic way.

• Select the right test tools. Much like selecting the right
language for a programming task, the right test tools must
also be chosen. The process to find the right set of tools
may take time; however, the right tools are a significant
step towards resolving automation challenges.

• Adjust the test automation strategy to the changes. The
right tool now may not be the right tool forever. Teams
are encouraged to continually evaluate their testing infras-
tructure for areas of improvement. If a team experiences
chronic infrastructure issues, it may be time to readdress
the strategy and tools in use.

2) Human Factors: Managing expectations about what
testing automation can do and what it costs to achieve is

key to preventing abandonment and short-term thinking. Wang
et al. identifies several relevant strategies on this front. First,
teams should formally define their test automation strategy,
including the goals, test scope, risks, resources, costs and
benefits, and effort needed to succeed. Securing buy-in from
the development team is vitally important here; as noted
by Fewster and Graham, “the best automation tool in the
world will not help test efforts if your team resists using
it.” [32] Likewise, teams should directly involve stakeholders
in developing this testing automation strategy; this includes
managers, users, or anyone else who may be affected by
the test automation. Finally, as the software project and the
surrounding circumstances change, the test automation plan
should remain flexible and evolve with them.

Another common challenge reported by our storytellers are
the gaps in testing automation skills due to the diversity
of backgrounds among CSE practitioners, the steep learning
curve of testing automation tools, and inconsistent and inad-
equate practices around test automation among CSE teams.
Wang et al. emphasizes the need for teams to share their
experiences with one another to enable organizational learning
and promote collaboration; this could include wikis, group
discussion forums, and creating reference repositories. This
should also include formal training programs offered by the
organization to help ease the learning curve, and support
from both the team and management for individuals to spend
time in that training in order to develop those skills more
fully. Within teams, there should be well-defined roles for
test-related activities, and the responsibilities for standing up
and maintaining test automation should be distributed evenly
so that all team members, not just RSEs, have a working
knowledge of the testing systems. Managing these human
factors may help teams to address the challenges of test
automation more effectively.

Again, we refer to several specific recommendations from
Table III (in order of importance):

• Have competent test professionals. A test professional
is expected to: “[i]dentify stakeholders and tools for
testing the software, develop a test plan for testing the
software, and collect and report data resulting from
testing/demonstration, etc.” [33] Without team members
who have adequate skills in these activities, testing will
likely suffer.

• Involve key stakeholders in strategy development. Key
stakeholders are necessary for the success of testing. They
will be able to ensure that the tests cover their needs and
provide insight and support.

• Keep test professionals motivated about test automation.
Testing cannot succeed without the team’s motivation. If
morale is falling, steps should be taken to discover and
fix the root cause.

VI. THREATS TO VALIDITY

We have identified four potential threats to validity in our
study: (1) generalization; (2) qualitative nature of the data; (3)



Challenges Recommendations

(Behavioural) Too high expectations

✓Involve key stakeholders in strategy development
✓Keep test professionals motivated about test automation
✓Define an effective test automation strategy
✓Adjust the test automation strategy to the changes

(Business and Planning) Cost of ownership and operation ✓Provide enough resources

(Skills) Diversity
(Skills) Steep learning curve
(Test System) Inadequate development practices

✓Share available test automation knowledge
✓Allow time for training and the learning curve
✓Have competent test professionals
✓Promote collaboration

(Test System) Testware architecture
(Test System) Limitations in externally sourced tools

✓Select the right test tools
✓Arrange testware in good architecture

(System Under Test) SUT testability ✓Design the system under test for automated testability

(System Under Test) Platform limitations
✓Define test automation requirements
✓Have control over changes of test automation requirements
✓Arrange testware in good architecture

TABLE III
PROPOSED ALIGNMENT OF CHALLENGES ATTESTED BY HALF OR MORE OF THE STORYTELLERS TO HIGH-LEVEL CATEGORIES OF BEST PRACTICES IN

TEST AUTOMATION IDENTIFIED IN A REVIEW BY WANG ET AL. [23].

lack of discussion or data on model evolution; and (4) personal
biases.

First, the authors in this study are all members of the same
institution and act as RSEs or RSE allies. This presents a
threat in the wide generalization of the results and analysis.
We cannot say, for example, that all practitioners across the
institution will have the same experiences and views. We have
mitigated this risk to the best of our ability, however, by
comparing our experiences with those recorded in scholarly
literature.

Second, the data in this study is entirely qualitative. Due to
the lack of quantitative data, we cannot guarantee the trends
and conclusions will hold true for all cases. Nevertheless, we
deem this to be an acceptable trade-off in order to demonstrate
a more general picture of our established test automation
state of practice at Sandia National Laboratories. As with the
previous threat, we have also attempted to mitigate this risk
by grounding our experiences with those found in external
scholarly literature, thus adding to the well of experiences and
reports in similar and different institutions.

Third, the data in this study does not account for the re-
search software phenomenon that tests may model the behavior
that is expected, only for the field to discover that this model is
incorrect. In practice, this may mean that even programs which
pass a well-designed automated test suite may still deliver
incorrect results. We cannot mitigate this threat to validity as
it is not enumerated as a barrier in the framework we use to
categorize barriers to automation, and it is not present in user
stories either. However, this model instability may be a part of
the complexity of the system under test, and described only
implicitly as “a complexity” rather than explicitly called out.

As a final note, we want to call out the potential of our
own personal biases. Because the authors themselves are the
participants, we recognize the potential to skew the results
based on our assumptions and feelings rather than actual

fact. As a primary attempt to mitigate this bias, two of the
authors provided no experience reports and focused solely on
the summary and analysis of those stories contributed by the
other seven authors. They then reviewed these perspectives
and analyses with the seven authors to ensure consistency of
beliefs and experiences. In this way, we aimed to minimize
possible bias while still preserving the expressed opinions.

VII. CONCLUSION

Automation for software development has become a com-
mon practice across industry and scientific software develop-
ment. In this article, the nine authors, all members of the
Research Software Engineering Community of Practice at
Sandia National Laboratories, shared their experiences with
testing automation in their scientific software projects. Using
a Participatory Action Research approach, we examined these
stories to identify common challenges and strategies employed
and compared those against peer-reviewed literature.

We found that there are a number of challenges reflected
in both the experience reports and literature. Some were
universal, such as system under test complexity and steep
learning curves, suggesting that effective mitigation strategies
should address these in particular. This in itself presents an in-
herent obstacle since highly complex problems will most likely
generate highly complex solutions. The problems broadly
fall under both technical and human factor categories, with
strategies mirroring these. These findings suggest that while
existing literature may offer some successful strategies, further
innovation is needed to continue enabling and accelerating
automated testing at SNL.

REFERENCES

[1] U. D. of Energy, “The state of the DOE national laboratories
(2020 edition),” U.S. Department of Energy, Tech. Rep.,
Jan 2021. [Online]. Available: https://www.energy.gov/downloads/
state-doe-national-laboratories-2020-edition

https://www.energy.gov/downloads/state-doe-national-laboratories-2020-edition
https://www.energy.gov/downloads/state-doe-national-laboratories-2020-edition


[2] H. Finkel, B. Brown, R. Pino, S. Hier-Majumder, and B. Spotz, “Re-
sponses to the request for information on stewardship of software for
scientific and high-performance computing,” USDOE Office of Science
(SC), Tech. Rep., 2021.

[3] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation of
software quality,” in Proceedings of the 2nd international conference on
Software engineering, 1976, pp. 592–605.

[4] M. De Bayser, L. G. Azevedo, and R. Cerqueira, “ResearchOps: The
case for DevOps in scientific applications,” in 2015 IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM). IEEE,
2015, pp. 1398–1404.

[5] B. W. Boehm, M. H. Penedo, E. D. Stuckle, R. D. Williams, and
A. B. Pyster, “A software development environment for improving
productivity,” Computer, vol. 17, no. 06, pp. 30–44, 1984.

[6] B. W. Boehm, “Improving software productivity,” Computer, vol. 20,
no. 09, pp. 43–57, 1987.

[7] D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview of
workflow management: From process modeling to workflow automation
infrastructure,” Distributed and parallel Databases, vol. 3, pp. 119–153,
1995.

[8] E. Dou and C. Reascos, “The next step in verification testing of complex
systems is automation,” in 2015 IEEE AUTOTESTCON. IEEE, 2015,
pp. 194–198.

[9] A. Meier and J. C. Ivarsson, “Agile software development and service
science: How to develop it-enabled services in an interdisciplinary
environment,” GSTF Journal on Computing (JoC), vol. 3, pp. 1–5, 2013.

[10] M. Kropp and A. Meier, “Qualitative study of successful agile software
development projects,” IMVS Fokus Report, 2014.

[11] D. Heaton and J. C. Carver, “Claims about the use of software engi-
neering practices in science: A systematic literature review,” Information
and Software Technology, vol. 67, pp. 207–219, 2015.

[12] J. C. Carver, N. Weber, S. Gesing, D. S. Katz, and K. Ram, “Urssi
conceptualization survey questions,” May 2019. [Online]. Available:
https://doi.org/10.5281/zenodo.2713885

[13] K. Karhu, T. Repo, O. Taipale, and K. Smolander, “Empirical observa-
tions on software testing automation,” in 2009 International Conference
on Software Testing Verification and Validation. IEEE, 2009, pp. 201–
209.

[14] K. Fogel, Producing open source software: How to run a successful free
software project. ” O’Reilly Media, Inc.”, 2005.

[15] R. Baxter, N. C. Hong, D. Gorissen, J. Hetherington, and I. Todorov,
“The research software engineer,” in Digital Research Conference,
Oxford, 2012, pp. 1–3.

[16] C. Maimone, “Supporting research software and research software
engineers,” 2019.

[17] I. A. Cosden, “The Princeton University RSE group model: Operational
and organizational approaches,” Computing in Science & Engineering,
2023.

[18] R. Milewicz, J. Willenbring, and D. Vigil, “Research, Develop, Deploy:
Building a full spectrum software engineering and research department,”
arXiv preprint arXiv:2010.04660, 2020.

[19] P. Reason and H. Bradbury, Handbook of action research: Participative
inquiry and practice. sage, 2008.

[20] W. G. Lutters and C. B. Seaman, “Revealing actual documentation usage
in software maintenance through war stories,” Information and Software
Technology, vol. 49, no. 6, pp. 576–587, 2007.

[21] R. Milewicz, J. Bisila, M. Mundt, S. Bernard, M. R. Buche, J. M. Gates,
S. A. Grayson, E. Harvey, A. Jarger, K. T. Landin, M. Negus, and B. L.
Nicholson, “DevOps pragmatic practices and potential perils in scientific
software development,” in Proceedings of Eighth International Congress
on Information and Communication Technology: ICICT 2023, London.
Springer, 2023.

[22] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist, “Impediments
for software test automation: A systematic literature review,” Software
Testing, Verification and Reliability, vol. 27, no. 8, p. e1639, 2017.

[23] Y. Wang, M. V. Mäntylä, Z. Liu, J. Markkula, and P. Raulamo-jurvanen,
“Improving test automation maturity: A multivocal literature review,”
Software Testing, Verification and Reliability, vol. 32, no. 3, p. e1804,
2022.

[24] M. Shahin, M. A. Babar, and L. Zhu, “Continuous integration, delivery
and deployment: a systematic review on approaches, tools, challenges
and practices,” IEEE access, vol. 5, pp. 3909–3943, 2017.

[25] W. W. Royce, “Managing the development of large software systems:
concepts and techniques,” in Proceedings of the 9th international con-
ference on Software Engineering, 1987, pp. 328–338.

[26] M. Gokarna and R. Singh, “Devops: a historical review and future
works,” in 2021 International Conference on Computing, Communica-
tion, and Intelligent Systems (ICCCIS). IEEE, 2021, pp. 366–371.

[27] E. Mueller, “What is DevOps?” Aug 2010. [Online]. Available:
https://theagileadmin.com/what-is-devops/

[28] C. SEI, “Software product lines curriculum,” 2020. [Online]. Available:
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=650239

[29] M. Mundt, K. Beattie, J. Bisila, C. Ferenbaugh, W. Godoy, R. Gupta,
J. Guyer, M. Kiran, A. Malviya-Thakur, R. Milewicz et al., “For the
public good: Connecting, retaining, and recognizing current and future
rses at national organizations,” Computing in Science & Engineering,
2023.

[30] E. Hoyle, “Teaching as a profession,” in International Encyclopedia
of the Social & Behavioral Sciences, N. J. Smelser and P. B. Baltes,
Eds. Oxford: Pergamon, 2001, pp. 15 472–15 476. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B0080430767024505

[31] L. Le Francois, “Test automation: A reality
check,” 2017. [Online]. Available: https://qaconsultants.com/blog/
test-automation-reality-check-1/

[32] M. Fewster and D. Graham, Software test automation. Addison-Wesley
Reading, 1999.

[33] N. Assyne, H. Ghanbari, and M. Pulkkinen, “The state of research
on software engineering competencies: A systematic mapping study,”
Journal of Systems and Software, vol. 185, p. 111183, 2022.

https://doi.org/10.5281/zenodo.2713885
https://theagileadmin.com/what-is-devops/
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=650239
https://www.sciencedirect.com/science/article/pii/B0080430767024505
https://qaconsultants.com/blog/test-automation-reality-check-1/
https://qaconsultants.com/blog/test-automation-reality-check-1/

	Introduction
	Background
	Methodology
	Results
	Continuous Integration
	Heterogeneous Computing Environment
	Interdisciplinary Collaboration Requirements
	Lack of Professionalization

	Analysis
	RQ1: Challenges in Testing Automation
	RQ2: Strategies to Address Challenges
	Toolchain Alteration
	Human Factors


	Threats to Validity
	Conclusion
	References

