

Defending: Fundamental Theories for the Mechanics of Polymer Chains and Networks

Michael R. Buche PhD Candidate, Theoretical and Applied Mechanics

Chair and Advisor: Meredith N. Silberstein Minor Committee: Steven H. Strogatz Alan T. Zehnder

6/7/2021

Outline

Fundamental Theories for the Mechanics of Polymer Chains and Networks

Introduction

Part I – statistical mechanical constitutive theory, no bond breaking

- Focus: distribution-behavior connection, thermodynamic ensemble
- Highlight: approximation method performance in macroscale

Part II – statistical mechanical constitutive theory, with bond breaking

- Focus: general derivation, IPDE solution, single-chain mechanical response
- Highlight: modeling mechanical experiments of polymers

Closing/Summary

Elastomers and rubber elasticity

Elastomers consist of many single polymer chains forming a network

L. R. G. Treloar. The Physics of Rubber Elasticity. Clarendon Press, Cambridge, UK, 1949. L. Mullins. Rubber Chem. Technol. **21**, 2 (1948).

1.

2.

3.

Elastomers designed to break (bonds)

Emerging elastomers are often designed to benefit from bond breaking while being deformed

- 1. Irreversible bond breaking
- 2. Transient bond breaking
- 3. Force-driven reversible breaking

Physically-founded constitutive models are essential

- Predictive power
- Fundamental understanding

Lavoie, Millereau, Creton, Long, Tang, J. Mech. Phys. Solids, 125, p. 523 (2019).

Montarnal, Capelot, Tournilhac, Leibler, Science, 334, p. 965 (2011).

Vidavsky[†], Buche[†], Sparrow, Zhang, Yang, DiStasio, Silberstein, Macromolecules, 53, p. 2021 (2020).

Single Chain Statistical Mechanics

Natural Statistical Correspondences

Distribution-behavior correspondence

Ensemble transformation

Legendre transformation

$$P^{\rm eq}(\boldsymbol{\xi}) = \frac{e^{-\beta\psi^*(\boldsymbol{\xi})}}{\iint e^{-\beta\psi^*(\boldsymbol{\xi})} d^3\boldsymbol{\tilde{\xi}}}$$

$$\psi^*(\boldsymbol{\xi}) = \psi^*_{\text{ref}} - kT \ln\left[\frac{P^{\text{eq}}(\boldsymbol{\xi})}{P^{\text{eq}}(\boldsymbol{\xi}_{\text{ref}})}\right]$$

$$\mathfrak{z}^{*}(\mathbf{f}) = \iiint \mathfrak{q}^{*}(\boldsymbol{\xi}) e^{\beta \mathbf{f} \cdot \boldsymbol{\xi}} d^{3}\boldsymbol{\xi} \qquad \varphi^{*}(\mathbf{f}) = \psi^{*}(\boldsymbol{\xi}) - \mathbf{f} \cdot \boldsymbol{\xi}$$
$$\mathfrak{q}^{*}(\boldsymbol{\xi}) = \left(\frac{\beta}{2\pi}\right)^{3} \iiint \mathfrak{z}^{*}(i\mathbf{f}) e^{-i\beta \mathbf{f} \cdot \boldsymbol{\xi}} d^{3}\mathbf{f}$$

Manca, et al., J. Chem. Phys., 136, p. 154906, 2012.

EFJC radial distribution function

Buche and Silberstein, Physical Review E, 102, 012501 (2020).

Macroscopic Mechanical Response

Cauchy stress obtained using constitutive theory

$$\boldsymbol{\sigma} = n \iiint P^{\text{eq}} \left[\mathbf{F}^{-1}(t) \cdot \boldsymbol{\xi} \right] \left(\frac{\partial \psi^*}{\partial \xi} \right) \left(\frac{\boldsymbol{\xi} \boldsymbol{\xi}}{\boldsymbol{\xi}} \right) d^3 \boldsymbol{\xi} - \left[p^{\text{eq}} + \Delta p(t) \right] \mathbf{1}$$

- Distinctions in the statistical description persist to play an important role in the macroscopic mechanics
- Approximation method performance may depend on the regime of deformation
- In any case, a physically-based hyperelastic constitutive model

$$\boldsymbol{\sigma} = \left(\frac{\partial a}{\partial \mathbf{F}}\right)_T \cdot \mathbf{F}^T$$

Journal of the Mechanics and Physics of Solids Volume 156, November 2021, 104593

Chain breaking in the statistical mechanical constitutive theory of polymer networks

Michael R. Buche, Meredith N. Silberstein 🝳 🖂

Cornell University

Nonequilibrium statistical mechanics

Nonequilibrium ensemble average

$$\Phi(t) = \langle \phi \rangle \equiv \int \cdots \int f(\Gamma; t) \phi(\Gamma) \, d\Gamma$$

Probability distribution for intact chains

$$P_{\rm A}(\boldsymbol{\xi};t) = \left\langle \delta^3 \left[\mathbf{R}(\boldsymbol{\Gamma}) - \boldsymbol{\xi} \right] \prod_{i=1}^M \Theta \left(\ell_i^{\ddagger} - \ell_i \right) \right\rangle$$

Liouville equation

$$\frac{\partial f}{\partial t} = (-\mathscr{L}) f = \left(\frac{\partial H}{\partial \mathbf{q}} \cdot \frac{\partial}{\partial \mathbf{p}} - \frac{\partial H}{\partial \mathbf{p}} \cdot \frac{\partial}{\partial \mathbf{q}}\right) f$$

Evolution equation using $\frac{d}{dt}\langle\phi\rangle = \langle \mathscr{L}\phi\rangle$

$$\frac{\partial P_{\mathbf{A}}(\boldsymbol{\xi};t)}{\partial t} = \sum_{j=1}^{M} \mathcal{R}_{j}''(\boldsymbol{\xi};t) - \sum_{j=1}^{M} \mathcal{R}_{j}'(\boldsymbol{\xi};t) - \frac{\partial}{\partial \boldsymbol{\xi}} \cdot \left[\dot{\boldsymbol{\xi}}_{\mathbf{A}}(\boldsymbol{\xi};t) P_{\mathbf{A}}(\boldsymbol{\xi};t) \right]$$

Affine assumption

 $\dot{\boldsymbol{\xi}}_{\mathrm{A}}(\boldsymbol{\xi};t) = \mathbf{L}(t) \cdot \boldsymbol{\xi}$

Transition state theory assumption

 $\mathcal{R}'_{j}(\boldsymbol{\xi};t) = k'_{j}(\boldsymbol{\xi})P_{\mathrm{A}}(\boldsymbol{\xi};t)$ $\mathcal{R}''_{j}(\boldsymbol{\xi};t) = k''_{j}(\boldsymbol{\xi})P_{\mathrm{B}_{j}}(\boldsymbol{\xi};t)$

Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, 2001. Zwanzig, Physical Review **124**, 983 (1961). Buche and Silberstein, J. Mech. Phys. Solids **156**, 104593 (2021). Reaction rate coefficient functions

$$\begin{aligned} k_j'(\boldsymbol{\xi}) = & \frac{1}{\beta} \frac{\mathbf{q}_{\sharp_j}^*(\boldsymbol{\xi})}{\mathbf{q}_{\mathrm{A}}^*(\boldsymbol{\xi})} \\ k_j''(\boldsymbol{\xi}) = & \frac{1}{\beta} \frac{\mathbf{q}_{\sharp_j}^*(\boldsymbol{\xi})}{\mathbf{q}_{\mathrm{B}_j}^*(\boldsymbol{\xi})} \end{aligned}$$

Cornell University

Exactly solving governing IPDE

Simplified evolution equation

$$\frac{\partial P_{\rm A}(\boldsymbol{\xi};t)}{\partial t} = -\left[\frac{\partial P_{\rm A}(\boldsymbol{\xi};t)}{\partial \boldsymbol{\xi}}\,\boldsymbol{\xi}\right]:\mathbf{L}(t) - k(\boldsymbol{\xi})\left\{P_{\rm A}(\boldsymbol{\xi};t) - \frac{P_{\rm A}^{\rm eq}(\boldsymbol{\xi})}{P_{\rm B}^{\rm tot,eq}}\left[1 - \iiint P_{\rm A}(\tilde{\boldsymbol{\xi}};t)\,d^{3}\tilde{\boldsymbol{\xi}}\right]\right\}$$

Conservation requirement (built-in)

Change of variables (flavor: method of characteristics)

$$\rho(t) \equiv \frac{P_{\rm B}^{\rm tot}(t)}{P_{\rm B}^{\rm tot,eq}} = \frac{1 - \iiint P_{\rm A}(\boldsymbol{\xi};t) \, d^{3}\boldsymbol{\xi}}{1 - \iiint P_{\rm A}^{\rm eq}(\boldsymbol{\xi}) \, d^{3}\boldsymbol{\xi}} \qquad \qquad H(\boldsymbol{\xi};t) \equiv P_{\rm A}\left[\mathbf{F}(t) \cdot \boldsymbol{\xi};t\right] e^{\int_{0}^{t} k[\mathbf{F}(s) \cdot \boldsymbol{\xi}] \, ds}$$

Rearrange, RHS only function of time

$$\frac{\partial H(\boldsymbol{\xi};t)}{\partial t} e^{-\int_0^t k[\mathbf{F}(s)\cdot\boldsymbol{\xi}]\,ds} = \frac{k\left[\mathbf{F}(t)\cdot\boldsymbol{\xi}\right]P_{\mathbf{A}}^{\mathrm{eq}}\left[\mathbf{F}(t)\cdot\boldsymbol{\xi}\right]}{P_{\mathbf{B}}^{\mathrm{tot,eq}}} \left\{1 - \iiint H(\tilde{\boldsymbol{\xi}};t) e^{-\int_0^t k\left[\mathbf{F}(s)\cdot\boldsymbol{\xi}\right]\,ds}\,d^3\tilde{\boldsymbol{\xi}}\right\}$$
$$\frac{\partial H(\boldsymbol{\xi};t)}{\partial t} \frac{e^{-\int_0^t k[\mathbf{F}(s)\cdot\boldsymbol{\xi}]\,ds}}{k\left[\mathbf{F}(t)\cdot\boldsymbol{\xi}\right]P_{\mathbf{A}}^{\mathrm{eq}}\left[\mathbf{F}(t)\cdot\boldsymbol{\xi}\right]} = \frac{1}{P_{\mathbf{B}}^{\mathrm{tot,eq}}} \left\{1 - \iiint H(\tilde{\boldsymbol{\xi}};t) e^{-\int_0^t k\left[\mathbf{F}(s)\cdot\boldsymbol{\xi}\right]\,ds}\,d^3\tilde{\boldsymbol{\xi}}\right\}$$
$$\equiv \rho(t)$$

Integrate, now need (consistent) solution for ρ

$$H(\boldsymbol{\xi};t) = H(\boldsymbol{\xi};0) + \int_0^t \frac{k \left[\mathbf{F}(\tau) \cdot \boldsymbol{\xi}\right] P_{\mathbf{A}}^{\mathrm{eq}}\left[\mathbf{F}(\tau) \cdot \boldsymbol{\xi}\right]}{e^{-\int_0^\tau k \left[\mathbf{F}(s) \cdot \boldsymbol{\xi}\right] \, ds}} \rho(\tau) \, d\tau$$

Buche and Silberstein, J. Mech. Phys. Solids 156, 104593 (2021).

Exactly solving governing IPDE

Tentative solution

$$H(\boldsymbol{\xi};t) = H(\boldsymbol{\xi};0) + \int_0^t \frac{k\left[\mathbf{F}(\tau)\cdot\boldsymbol{\xi}\right]P_{\mathbf{A}}^{\mathrm{eq}}\left[\mathbf{F}(\tau)\cdot\boldsymbol{\xi}\right]}{e^{-\int_0^\tau k\left[\mathbf{F}(s)\cdot\boldsymbol{\xi}\right]ds}}\rho(\tau)\,d\tau \qquad \qquad H(\boldsymbol{\xi};t) \equiv P_{\mathbf{A}}\left[\mathbf{F}(t)\cdot\boldsymbol{\xi};t\right]e^{\int_0^t k\left[\mathbf{F}(s)\cdot\boldsymbol{\xi}\right]ds}$$

Substitution into the conservation requirement retrieves a Volterra integral equation:

$$\rho(t) \equiv \frac{P_{\rm B}^{\rm tot}(t)}{P_{\rm B}^{\rm tot,eq}} = \frac{1 - \iiint P_{\rm A}(\boldsymbol{\xi};t) \, d^3 \boldsymbol{\xi}}{1 - \iiint P_{\rm A}^{\rm eq}(\boldsymbol{\xi}) \, d^3 \boldsymbol{\xi}} \qquad \qquad \rho(t) + \int_0^t K(t,\tau) \rho(\tau) \, d\tau = b(t)$$

where the kernel and right-hand-side function are

$$K(t,\tau) = \frac{1}{P_{\rm B}^{\rm tot,eq}} \iiint P_{\rm A}^{\rm eq} \left[{}_{(t)}\mathbf{F}(\tau) \cdot \boldsymbol{\xi} \right] \frac{\partial \Xi(\boldsymbol{\xi};t,\tau)}{\partial \tau} d^{3}\boldsymbol{\xi} \qquad b(t) = \frac{1}{P_{\rm B}^{\rm tot,eq}} \left\{ 1 - \iiint P_{\rm A} \left[\mathbf{F}^{-1}(t) \cdot \boldsymbol{\xi};0 \right] \Xi(\boldsymbol{\xi};t,0) d^{3}\boldsymbol{\xi} \right\}$$

where the relative deformation is

and where we define the reaction propagator as

Exactly solving governing IPDE

Liouville-Newmann series solution:

$$\begin{split} \rho(t) &= b(t) + \sum_{m=1}^{\infty} (-1)^m \int_0^t K_m(t,\tau) b(\tau) \, d\tau \\ K_m(t,\tau) &\equiv \int_{\tau}^t K(t,s) K_{m-1}(s,\tau) \, ds \end{split}$$

Solution converges if kernel square-integrable

$$\|K\|^2 \equiv \int_0^{\mathcal{T}} \int_0^t \left| K(t,\tau) \right|^2 d\tau \, dt < \infty$$

Since $0 \leq \Xi(\boldsymbol{\xi}; t, \tau) \leq 1$ we have $K \leq \hat{K}$ and thus $\|K\|^2 \leq \|\hat{K}\|^2$, where

$$\begin{split} \hat{K}(t,\tau) &\equiv \frac{1}{P_{\rm B}^{\rm tot,eq}} \iiint k\left[_{(t)}\mathbf{F}(\tau) \cdot \boldsymbol{\xi}\right] P_{\rm A}^{\rm eq}\left[_{(t)}\mathbf{F}(\tau) \cdot \boldsymbol{\xi}\right] d^{3}\boldsymbol{\xi} \\ &= \frac{1}{P_{\rm B}^{\rm tot,eq}} \iiint k(\boldsymbol{\xi}) P_{\rm A}^{\rm eq}(\boldsymbol{\xi}) d^{3}\boldsymbol{\xi} \qquad \text{since } d^{3}\boldsymbol{\xi} \text{ is invariant under } (t)\mathbf{F}(\tau) \cdot \boldsymbol{\xi} \rightarrow \boldsymbol{\xi} \text{ due to incompressibility} \end{split}$$

If we follow the framework, this is $bTq_{\ddagger}/q_{\rm B} < \infty$ (true) Otherwise, acts as a rule.

$$\begin{split} P_{\mathbf{A}}(\boldsymbol{\xi};t) &= P_{\mathbf{A}}\left[\mathbf{F}^{-1}(t)\cdot\boldsymbol{\xi};0\right] \Xi(\boldsymbol{\xi};t,0) + \int_{0}^{t} P_{\mathbf{A}}^{\mathrm{eq}}\left[_{(t)}\mathbf{F}(\tau)\cdot\boldsymbol{\xi}\right] \, \frac{\partial\Xi(\boldsymbol{\xi};t,\tau)}{\partial\tau} \,\rho(\tau) \, d\tau \\ \boldsymbol{\sigma}(t) &= n \iiint P_{\mathbf{A}}(\boldsymbol{\xi};t) \, \frac{\partial\psi_{\mathbf{A}}^{*}(\boldsymbol{\xi})}{\partial\boldsymbol{\xi}} \, \boldsymbol{\xi} \, d^{3}\boldsymbol{\xi} - p(t)\mathbf{1} \end{split}$$

R. P. Kanwal. Linear Integral Equations. Springer Science & Business Media, New York, 2013.
M. Rahman. Integral Equations and Their Applications. WIT press, Boston, MA, 2007.
J. A. Cochran. The Analysis of Linear Integral Equations. McGraw-Hill, New York, 1972.
Buche and Silberstein, J. Mech. Phys. Solids 156, 104593 (2021).

Cornell University

 $\kappa \equiv \beta \ell_b^2 \left. \frac{\partial^2 u(\ell)}{\partial \ell^2} \right|_{\ell}$

Single-chain model

uFJC model, with Hamiltonian

$$H(\Gamma) = \sum_{i=1}^{N_b+1} \frac{p_i^2}{2m} + \sum_{i=1}^{N_b} u(\ell_i)$$

Nondimensional variables

 $\eta \equiv \beta f \ell_b$ $\gamma \equiv \xi / N_b \ell_b$

Langevin function

$$\mathcal{C}(\eta) = \coth(\eta) - 1/\eta$$

Harmonic potential mechanical response

$$\gamma_{\rm EFJC}(\eta) = \mathcal{L}(\eta) + \frac{\eta}{\kappa} \left[1 + \frac{1 - \mathcal{L}(\eta) \coth(\eta)}{1 + (\eta/\kappa) \coth(\eta)} \right]$$

Fiasconaro and Falo, *Physica A*, **532**, p. 121929 (2019).

First-order asymptotic approximation (stiff bonds)

$$\gamma_{\text{EFJC}}(\eta) \sim \mathcal{L}(\eta) + \frac{\eta}{\kappa} \left[2 - \mathcal{L}(\eta) \coth(\eta)\right] \text{ for } \kappa \gg 1.$$

For small forces and stiff bonds, *u*FJC has the same

$$\gamma(\eta) \sim \mathcal{L}(\eta) + \frac{\eta}{\kappa} [2 - \mathcal{L}(\eta) \coth(\eta)] \text{ for } \kappa \gg 1 \text{ and } \eta \ll 1.$$

Single-chain model

Asymptotic matching (Prandtl's method)

 $\lim_{\eta \to \infty} \gamma_{\eta \ll 1}(\eta) = \lim_{\eta \to 0} \gamma_{\eta \gg 1}(\eta).$

First-order approximation

$$\gamma_1(\eta) \sim \mathcal{L}(\eta) + \frac{\eta}{\kappa} [1 - \mathcal{L}(\eta) \coth(\eta)] + \lambda(\eta) - 1 \text{ for } \kappa \gg 1.$$

For sufficiently large stiffness, insignificant term

 $\left|\eta[1 - \mathcal{L}(\eta) \coth(\eta)]\right| \le 1 \text{ for all } \eta,$

J. M. Powers and M. Sen. Mathematical Methods in Engineering. Cambridge University Press, New York, 2015. Buche and Silberstein, J. Mech. Phys. Solids 156, 104593 (2021).

Cornell University

Modeling multinetwork elastomer

Lavoie, Millereau, Creton, Long, Tang, J. Mech. Phys. Solids, **125**, p. 523, 2019.

Rate-independent irreversible breaking

Specialized solution

Reaction propagator becomes yield function

$$\Theta(\boldsymbol{\xi}; t, \tau) \equiv \begin{cases} 1, & \left\|_{(t)} \mathbf{F}(s) \cdot \boldsymbol{\xi}\right\|_2 \le \xi_c & \forall s \in [\tau, t], \\ 0, & \text{otherwise.} \end{cases}$$

Ducrot, Chen, Butlers, Sijbesma, Creton, Science, **344**, p. 186, 2014. Buche and Silberstein, J. Mech. Phys. Solids 156, 104593 (2021).

 $P_{\mathbf{A}}(\boldsymbol{\xi};t) = P_{\mathbf{A}}^{\mathrm{eq}} \left[\mathbf{F}^{-1}(t) \cdot \boldsymbol{\xi} \right] \Theta(\boldsymbol{\xi};t,0)$

Modeling multinetwork elastomer

Ducrot, Chen, Butlers, Sijbesma, Creton, Science, **344**, p. 186, 2014. Buche and Silberstein, J. Mech. Phys. Solids 156, 104593 (2021).

Modeling molecular release in a gel

Modeling molecular release in a gel

Outlook

- Single linear timescale of transient breaking
 - Sufficient in a limited capacity
 - Future: many timescales, and/or revisiting TST
- Dissipation not from bond breaking
 - Sometimes significant. Distinction: lack of droop.
 - Future: viscous stresses (chain slippage, etc.)
- Other important future avenues
 - Breaking-induced network alteration
 - Non-trivial reforming
 - Non-affine swelling/deformation

Overall, the approach is a robust method for macroscale constitutive models in terms of molecular functions and parameters

Presentation summary

• Single polymer chain mechanics

- Single-chain mechanical response
- Equilibrium distribution of chains
- Extension-dependent reaction rates

• Polymer network mechanics

- Exactly-solved evolution equations
- Constitutive theory (stress, dissipation inequality)
- Informed almost entirely by single-chain model

Elastomer constitutive models

- General (force-driven reversible breaking)
- Special cases
 - Absence of bond breaking
 - Irreversible bond breaking
 - Transient bond breaking
 - Intact after reaction

Publications

Primary

- Vidavsky, Yuval*, Michael R. Buche*, Zachary M. Sparrow, Xinyue Zhang, Steven J. Yang, Robert A. DiStasio, Meredith N. Silberstein. Tuning the mechanical properties of metallopolymers via ligand interactions: a combined experimental and theoretical study. *Macromolecules*, 53, 2021-2030 (2020).
 *Denotes equal contribution.
- 2. Buche, Michael R., and Meredith N. Silberstein. Statistical mechanical constitutive theory of polymer networks: the inextricable links between distribution, behavior, and ensemble. *Physical Review E*, **102**, 012501 (2020).
- **3.** Buche, Michael R., and Meredith N. Silberstein. Chain breaking in the statistical mechanical constitutive theory of polymer networks. Under review at *Journal of the Mechanics and Physics of Solids* (2021).

Secondary

- 1. Zhang, Xinyue, Yuval Vidavsky, Sinai Aharonovich, Steven J. Yang, **Michael R. Buche**, Charles E. Diesendruck, Meredith N. Silberstein. Bridging experiments and theory: isolating the effects of metalligand interactions on viscoelasticity of reversible polymer networks. Soft Matter, 16, 8591-8601 (2020).
- 2. P. B. Jayathilaka, T. G. Molley, Y. Haung, M. S. Islam, **M. R. Buche**, M. N. Silberstein, J. J. Kruzic, and K. A. Kilian. Force-mediated molecule release from double network hydrogels. Submitted to *Chemical Communications* (2021).

Presentations

Conferences

- 1. APS March Meeting 2019
- 2. MechanoChemBio (poster)
- 3. Society of Engineering Science 2019

Other seminars

- 1. Cornell mechanics colloquium
- 2. A Exam
- 3. Sandia job interviews (x2)

Acknowledgements

Extreme Science and Engineering Discovery Environment

MODERNIZATION PROGRAM

This research is funded by the National Science Foundation (CMMI-1653059) and the Office of Naval Research (N00014-17-1-2989).