
DevOps Pragmatic Practices
and Potential Perils in Scientific
Software Development

Reed Milewicz, Jonathan Bisila, Miranda Mundt, Sylvain Bernard,
Michael Robert Buche, Jason M. Gates, Samuel Andrew Grayson,
Evan Harvey, Alexander Jaeger, Kirk Timothy Landin, Mitchell Negus,
and Bethany L. Nicholson

Abstract The DevOps movement, which aims to accelerate the continuous delivery
of high-quality software, has taken a leading role in reshaping the software industry.
Likewise, there is growing interest in applying DevOps tools and practices in the
domains of computational science and engineering (CSE) to meet the ever-growing
demand for scalable simulation and analysis. Translating insights from industry to
research computing, however, remains an ongoing challenge; DevOps for science
and engineering demands adaptation and innovation in those tools and practices.
There is a need to better understand the challenges faced by DevOps practitioners
in CSE contexts in bridging this divide. To that end, we conducted a participatory
action research study to collect and analyze the experiences of DevOps practitioners
at a major US national laboratory through the use of storytelling techniques. We
share lessons learned and present opportunities for future investigation into DevOps
practice in the CSE domain.

Keywords DevOps · Scientific software development · Research software
engineering

The first, second, and third authors contributed equally to this work.

R. Milewicz (B) · J. Bisila · M. Mundt · S. Bernard ·M. R. Buche · J. M. Gates · S. A. Grayson ·
E. Harvey · A. Jaeger · K. T. Landin · M. Negus · B. L. Nicholson
Sandia National Laboratories, Albuquerque, NM, USA
e-mail: rmilewi@sandia.gov

J. Bisila
e-mail: jbisila@sandia.gov

M. Mundt
e-mail: mmundt@sandia.gov

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
X.-S. Yang et al. (eds.), Proceedings of Eighth International Congress on Information
and Communication Technology, Lecture Notes in Networks and Systems 693,
https://doi.org/10.1007/978-981-99-3243-6_51

629

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3243-6_51&domain=pdf
mailto:rmilewi@sandia.gov
mailto:jbisila@sandia.gov
mailto:mmundt@sandia.gov
https://doi.org/10.1007/978-981-99-3243-6_51

630 R. Milewicz et al.

1 Introduction

High-performance computing (HPC) today plays a central role in scientific discovery,
economic competitiveness, and national security in the United States and elsewhere.
On the economic front, one US-government funded study estimated that every dollar
invested in HPC generated an average of $507 of new revenue and $47 in profit or
cost savings [1]. Likewise, to stay at the forefront of science and engineering, the
United States has made substantial investments into computing technologies to push
HPC into the Exascale era [2], with the world’s first supercomputer capable of over
a quintillion operations per second, Frontier, being brought online in 2022.

As the demand for high-quality simulations and data analyses continues to grow,
the computational science and engineering (CSE) community has likewise had to
evolve; there has been a notable shift away from small teams working on research
scripts in isolation toward community-driven, open-source software ecosystems [3–
6]. The makeup of the workforce has also been rapidly diversifying, with Research
Software Engineering (RSE), DevOps, and IT Service Management (ITSM) pro-
fessionals allying with computational scientists and mathematicians. They bring
with them modern tools, practices, and perspectives on software development and
maintenance – bridging the divide between conventional and scientific computing.
Integrating those professionals into the teams, institutions, and culture remains an
ongoing challenge [7–9], but the historical “chasm” between software engineering
and scientific computing has narrowed considerably in recent years (c.f., [10]).

In this study we focus our attention on DevOps in CSE contexts. For the purposes
of this work, we use the definition of DevOps coined by Leite et al.:“a collaborative
and multidisciplinary effort within an organization to automate continuous delivery
of new software versions, while guaranteeing their correctness and reliability” [11].
To keep pace with demand, HPC CSE software must evolve more quickly while
still remaining credible and trustworthy. There is an urgent need for more capable
cyberinfrastructures to develop, deploy, and maintain that software. At the same
time, however, DevOps for science and engineering presents unique challenges, and
it demands adaptation and innovation in tools and practices; solutions that work
for a web application in industry are unlikely to perfectly fit the needs of a multi-
physics HPC application. At the present, the intersection of DevOps and scientific
computing is critically understudied. A deeper understanding of how DevOps work
is done in CSE contexts and what needs practitioners have could (1) inform the
design of better tools and techniques, (2) support effective policy-making around
cyberinfrastructure sustainment, and (3) raise awareness of the critical role played
by DevOps practitioners in advancing science and engineering.

For these reasons, we conducted a participatory action research study to collect
and analyze the experiences of DevOps practitioners at Sandia National Laborato-
ries [12]. The first three authors of this study recruited practitioners to share “war
stories” [13], detailed narratives of challenges faced and accomplishments made in
DevOpswork at the laboratories. In linewith the principles of action research to allow
software professionals to express their own voices, all participants were co-equally
involved this study and are co-authors of this paper.

DevOps Pragmatic Practices and Potential Perils … 631

2 Background

DevOps has been in existence and usage for over a decade, evolving naturally from
a necessity for breaking down silos between different developers within a software’s
lifecycle to focus on people and processes instead of distinct outcomes [14]. The shift
is primarily marked by the creation of the devopsday conferences1 in 2009 and has
grown into aworldwidemovement over the past 13years. The emphasis of DevOps is
to merge the “makers” with the “deployers” to create a more cohesive (and iterative)
product; in fact, it is a natural extension of the Agile principles to extend beyond
“code checkin” [15].

We can already see an issuewith this emphasis, however—it is focused on creating
and deploying a product in a pipeline where developers and operations professionals
are not one and the same. Within scientific software communities, however, these
activities have stayed essentiallymerged for research scientists. This is because,more
often than not, researchers assume all of the roles within a software lifecycle [16].
Because software now underpins nearly all realms of scientific research, scientific
researchers are expected to be literate not only in their domain of expertise, but also
in software engineering.

There is a natural shift to respond to this need—including the application of Dev-
Ops practices to existing and new scientific software development teams. Through a
combination of gray literature, peer-reviewed literature, and personal “war stories,”
we have observed that the adoption of these practices has large potential—but also
potential pitfalls. We aim in this paper to discuss some of these successes and fail-
ures, contrasting how our stories compare with the top critical challenges to DevOps
culture adoption as found in a recent systematic review by Khan et al. [17] and prior-
itized practices as discussed by Akbar et al. [18], to provide actionable suggestions
for changes to the current paradigm, and to highlight areas where more researchmust
be done.

3 Related Work

Almost all of the scholarly literature concerning DevOps for CSE has come from
the perspective of researchers interested in applying DevOps tools and techniques
rather than from DevOps practitioners. Conversely, there is a significant amount
of gray literature (e.g., whitepapers, blog posts) that comes from the practitioners’
perspectives.

In part, this is due to the recent up-trend of conferences and workshops geared
toward scientific software development. Here is a non-exhaustive list of examples:
the Collegeville workshop series2; the Tri-lab Advanced Simulation & Computing

1 https://devopsdays.org/.
2 https://collegeville.github.io/Workshops/.

https://devopsdays.org/
https://collegeville.github.io/Workshops/

632 R. Milewicz et al.

Sustainable Scientific Software Conference3; and the Workshop on the Science of
Scientific Software Development and Use4. Software sustainability has also been
at the forefront of consideration for the Department of Energy as shown by the
recent Request for Information on Stewardship of Software for Scientific and High-
PerformanceComputing [19]. Cross-institutional projects such as the Exascale Com-
puting Project (ECP)5 also place importance on developer productivity and better
development practices for scientific software, with information distributed through
webinars, tutorials, and the website Better Scientific Software (BSSw)6.

DevOps is a recurring topic in this space. In their BSSw blog post, Beattie and
Gunter detail the adaptations of DevOps practices that have been applied to the
Institute for Design of Advanced Energy Systems (IDAES), which include weekly
standup meetings, incremental improvements to automated testing, and “soapbox-
ing” (frequent discussions about the importance of software engineering practices
with leadership) [20]. The 2020 Collegeville workshop’s theme was “Developer Pro-
ductivity” which yielded whitepapers that discussed Agile practices, challenges and
successes related to automated testing, and a mapping of difficulties and recommen-
dations for each stage of the software delivery lifecycle from the lens of scientific
software engineering [21–24]. The 2022 Tri-lab Advanced Simulation &Computing
Sustainable Scientific Software Conference had two tracks for “DevOps Infrastruc-
ture Development” and “DevOps CI/CD Pipeline Development.”

de Bayser et al. has argued that DevOps concepts and practices should be inte-
grated into the activities of researchers to help increase productivity and quality of
the resulting software [25, 26].Whitepapers and blogs from the DevOps community,
however, argue for more specialized roles. Gesing argues for the implementation of
well-defined roles in teams rather than researchers acting as “all-rounders” [27].
Adamson and Malviya Thakur second this view in their whitepaper on the opera-
tionalization of scientific software fromaDevSecOps perspective [28]. This is further
supported by the rise of the RSE professional designation which aims to represent the
unique role of software engineering expertise applied directly into research software
development.

4 Methodology

To collect and analyze the experiences of software practitioners doing DevOps work
in CSE contexts, we used storytelling techniques to draw together an ensemble of
challenges and triumphs in DevOps for CSE. We then analyzed that data through a
participatory action research lens to build consensus among participants around their
needs and values.

3 https://s3c.sandia.gov/.
4 https://web.cvent.com/event/1b7d7c3a-e9b4-409d-ae2b-284779cfe72f/summary.
5 https://www.exascaleproject.org/.
6 https://bssw.io.

https://s3c.sandia.gov/
https://web.cvent.com/event/1b7d7c3a-e9b4-409d-ae2b-284779cfe72f/summary
https://www.exascaleproject.org/
https://bssw.io

DevOps Pragmatic Practices and Potential Perils … 633

Fig. 1 An illustration of the methodology used to collect and assess evidence gathered in our
study. Participants were recruited to share stories of challenges and triumphs in DevOps, report
lessons learned, and reflect on their questions about best practices. For our analysis, we compared
reported experiences to trends in the scholarly literature and then iterated with our participants as
co-researchers to refine the contents of this study.

Storytelling is a qualitative data collection technique where participants are asked
to recount detailed events from their own experiences [29]. The use of storytelling
to analyze participants’ experiences is a popular technique in the social sciences. A
2022 publication ofCommunications of the ACM, Barik et al. speak to the importance
of applying storytelling techniques in scientific settings to promote better commu-
nication and overall understanding [30]. Moreover, as noted by Polletta et al., as a
method for representing the views, attitudes, and experiences of a community, story-
telling is often seen as more authentic and democratic in character (i.e., “everybody
has a story”) [31].

Our study draws inspiration from the work of Lutter and Seaman, who collected
“war stories” concerning documentation usage during software maintenance [13]. A
key methodological difference in our work is that we seek to apply methodological
techniques from participatory action research (PAR) to guide our data collection and
analysis. PAR is an approach to action research that emphasizes direct participation in
the research process by the members of the community whose interests the research
is meant to serve [32]; as explained by Baum et al., “PAR advocates that those
being researched should be involved in the process actively” [33]. In our work,
we take the position that software practitioners doing DevOps for CSE are qualified
subject matter experts who can speak credibly to the challenges they face, and that all
participants in our study (the first three authors included) are co-researchers. For that
reason, rather than collecting data from participants and independently performing
qualitative analysis on that data, we used an iterative, consensus-based approach to
draw out themes among our experiences. To help lend greater validity to the work
andmitigate bias, we draw upon the peer-reviewed literature to compare and contrast
our experiences with those of other DevOps practitioners (see Fig. 1).

All the authors of this study are employed at Sandia National Laboratories, a
US federally-funded research and development center (FFRDC)7. As national secu-

7 https://www.sandia.gov.

https://www.sandia.gov

634 R. Milewicz et al.

rity laboratory, Sandia relies heavily on computational simulation and data analysis
to achieve its science and engineering objectives; this is made possible through a
complex ecosystem of scientific software libraries and applications, some developed
internally and others community-owned and hosted on the open web. Orchestrating
the development, deployment, and maintenance of those software stacks is a sig-
nificant DevOps research and development (R&D) challenge and an active area of
interest for US national laboratories. During the Fall of 2022, the first three authors
recruited participants through the institution’s Research Software Engineering Com-
munity of Practice (RSE-COP) mailing list and directly from the first three authors’
departments (roughly 150 people in total). Participants confirmed their participation
over email and submissions for stories were collected using a collaboratively-edited,
web-based corporate wiki. The contribution page included guidelines for potential
contributors.

In particular, potential contributors were asked to provide stories about their expe-
riences conducting DevOps in scientific software development (successes, failures,
challenges, changes, etc.) in topics such as testing, team policies and procedures,
technology stack modernizations, tradeoffs (e.g., maintainability for performance),
etc. To seed the discussion, the first three authors provided stories and open ques-
tions. Recruitment yielded 9 additional participants, and together we produced a set
of 13 stories that reflect different aspects of DevOps work at the labs. In addition to
the stories, contributors added open questions relating to their story or the DevOps
culture and ecosystem. We present those stories and questions in Sect. 5.

To better understand how our experiences map to those of DevOps practitioners
outside of CSE contexts, we analyze their challenges and lessons learned through the
lens of the scholarly literature on DevOps in industry contexts. In particular, we use
two systematic reviews of the literature to frame our analysis: a review of common
cultural challenges to DevOps adoption in organizations by Khan et al. [17] and a
review of best practices in DevOps by Akbar et al. [18]. We present findings from
our analysis in Sect. 6.

5 Results

Following the collection of the stories, we identified four overarching themes: Soft-
ware Development Lifecycle, Testing, Team Policies and Processes, and Institutional
Support. We present the results of those themes here, including open questions posed
by the authors, and will discuss them in more detail in Sect. 6.

5.1 Software Development Lifecycle

Software development of all forms will execute, whether explicitly or implicitly,
a software development lifecycle (SDLC) model [34]. Popular models are Agile,

DevOps Pragmatic Practices and Potential Perils … 635

Kanban, and (the topic of this paper) DevOps. At their core, SDLC models provide
defined structure for software development activities.

CSE teams also employ SDLC models, such as Use Case Driven Development.
“Use Cases” are the fundamental piece of business value in most software. They can
help clearly communicate the business needs from the customer to the development
and research staff. Use Case Driven Development is a methodology focused on using
“Use Cases” as the central component to writing software [35].

The application of this methodology to scientific software development can be
quite natural. As one author details:

At the start of a newproject, we knew that the customerwould have a set of research questions
related to their data and domain. To design the software, we modeled each research question
as a use case and had a few planning meetings to further define entities and relationships. ...
Each use case became a command line tool and separate python module that the customer
could use directly. We developed a common set of libraries that define and work with the
domain entities and relationships—S1.

In practice, this author found that applying Use Case Driven Development strate-
gies to their research resulted in much more cohesive conversations around and
development of the research software. Each feature could be directly mapped to a
“Use Case,” and because of the modularity of the design, it became much easier to
augment when new questions were added to the domain.

While Use Case Driven Development is useful for creating software, there is still
the consideration of deploying it. A common challenge particularly across national
laboratories is how to ensure cohesive usage across differing customers, networks,
computing systems, and architectures. Two of the authors describe their solutions to
this challenge:

We have started using Docker containers to rapid and flexibly deploy software to our cus-
tomers. ... Using this set of Docker containers removes the concern about customizing an
environment on the customer machine(s). Instead, we can customize everything on our end
and then send them the set of Docker containers as a zip file. In practice this has increased
our success rate of deployment and allowed us to ensure that our development environment
is nearly identical to our deployment environment—S2.

While this solution is tuned to an external customers’ needs, another of the authors
instead looked at how to resolve differing build environments within the same devel-
opment team:

One of the consistent workflow problems that my colleagues and I have run into, especially
when on-boarding new teammembers, is to get someone set up with the proper development
environment, the correct versions of libraries, etc. for a particular project. ... In the last few
years, a number of my colleagues and I have managed our build environments using the
Nix system, and it has been quite beneficial to our projects. When on-boarding new people,
all they have to do is execute the command nix develop in the root of the source tree.
Occasionally there is a hiccup, but the vast majority of the time they get a fully configured
development environment without any additional effort. This saves us days or weeks of
frustration—S3.

These stories detail successful application of industry-standard DevOps solutions
to scientific software development needs.

636 R. Milewicz et al.

5.2 Testing

The challenges surrounding testing scientific software have been well-documented.
In Kanewala and Bieman’s literature review, they detailed that these challenges come
in two forms: technical and cultural [36]. The authors have experienced the problems
in both of these major categories.

Technical In the category of technical challenges, Kanewala and Bieman further
categorize into four sections: (1) test case development, (2) producing expected test
case output values, (3) test execution, and (4) test result interpretation. Independent
of this literature review, the authors provided stories (some failures, some successes)
that fall into each of the four sub-categories.

With regards to (1), one author specifically calls out difficulties relating to number
of potential parameters:

Some bugs were able to slip past our CI/CD. These bugs were usually missed because the
CI/CD did not fully exercise the parameter space (e.g., build options). The team is looking
to fix this by either running a full factorial parameter matrix or by decomposing the behavior
into independent units which can be tested independently rather than compositionally—S4.

Another author also alludes to configuration options in their testing infrastructure:

I ammember of a software package that consists of dozens of sub-packageswith thousands of
configuration options, all of which application teams rely on for their specific sub-package.
Continuous integration testing entails vetting that the code-base works with specific config-
uration settings; toolchains such as GCC, CLANG, and CUDA; and HPC architectures—S5.

The same author also details challenges with regards to (3):

The CI testing infrastructure is currently limited to using a custom automation tool that
pulls the proposed code changes into [our institution’s] networks. The tool must then launch
and monitor the tests. With build and test times averaging six hours and up to 11 builds
run per change, there is a huge maintenance and resource cost. Frequently, something goes
wrong during the average build and results in test results never being reported back to the
developer—S5.

While not explicitly stated within (3), modernization of testing infrastructures
was another consideration of the authors with respect to test execution.

I am a DevOps contributor to a scientific Python package aimed at optimization modeling.
... In early 2022, a downstream dependency requested support for Python 3.10. This request
revealed a problem ... [that] required an entire refactor of the testing suite to use the popular
and regularly maintained package pytest. On the surface, this refactor seemed simple. The
issue: because of the age of the scientific package, ample homegrown infrastructure had been
built specifically around nosetests that needed to be preserved (e.g., dynamic categorization,
dynamic test creation). What was anticipated to be a quick and simple fix took over a month
of dedicated, time-intensivework to convert in order tomaintain expected functionality—S6.

Multiple authors have had to contend with one of the largest plagues in scientific
software: repeated code (4).

DevOps Pragmatic Practices and Potential Perils … 637

Often times in engineering science software libraries, there aremany similar implementations
(models, etc.) that could share a lot of the same core tests. This includes integration tests in
addition to unit tests. The problem is that the many similar implementations rarely share the
same tests, since they are typically developed in series rather than in parallel. ... This causes
issues related to inconsistent testing of implementations when certain tests are included
somewhere and not elsewhere, and a lack of testing efficiency when the tests are copied
in multiple places. Theses issues can inhibit the quality of the software and cause further
development to become less straightforward—S7.

In some cases, the repeated code led to the developers struggling with the same
bug for over a decade:

While running an important application deployed to an HPC cluster, it was discovered that
there was a scalability bug in a math library we develop, resulting in a nearly 30% drop in
performance. ... What was interesting, however, was the unusually long-lived history of the
bug. The team of developers who found the bug discovered that the exact same bug had been
introduced, found, and fixed in the math library multiple times over the years. The offending
code was first introduced in three packages between 1998–2000 and fixed in 2005, copied
line for-line into a fourth package in 2004 and fixed again in 2015, and finally introduced
into the last package in 2014 and fixed in 2017. In each case, the discovery and solutions
were socialized, comments were made in the code, and notes were left in an issue tracker,
but that information did not flow to the right parties in each subsequent incident—S8.

While the DevOps challenges surrounding testing in scientific software develop-
ment are well-known and commonly experienced, testing has long-reaching impli-
cations on the success and stability of the software. One author describes the benefit
of formal verification (2):

I regularly contribute to a large code base in a domain that is notorious for begetting intricate
software systems that contain all sorts of subtle bugs, some which can live for decades. The
particular code that I contribute to is unique because it has a formal, end-to-end, proof of
correctness, which is mechanically checked against the code at compile-time. [In o]ne of
the improvements that I worked on ... I hit a wall in the proof and could not proceed further.
When investigating why the proof wouldn’t work, I realized that my implementation was
incorrect. I had missed a corner case. In the end, I might have been able to catch this corner
case with tests, but the application domain is complex enough where that bug could easily
have gone unnoticed. I was able to fix this bug before it ever made it into the code-base—S9.

Some of these experiences, however, crossed the line from technical into cultural.

Cultural Examples of technical challenges experienced by the authors are endless.
They are not, however, strangers to the cultural concerns as well.While story S9 talks
about the benefit of formal verification, the author also notes a significant problem—
formal education:

The overwhelming majority of scientists and software engineers have absolutely no expe-
rience in formal verification. It just seems like a black art. How do we educate our work-
force about practical formal verification? Just as with “design-for-test,” how do we integrate
“design-for-verification” into our programming curricula?—S9

One author calls out specific ways that education can be applied:

The greatest difficulty I’ve had as a DevOps practitioner in the research software world has
been getting decision makers to understand the complexity involved in designing, building,

638 R. Milewicz et al.

maintaining, and extending infrastructures to accelerate the delivery of value from devel-
opment into operations, amplify feedback loops, and enable a culture of continual learning
and experimentation. Building shared understanding is a prerequisite for culture change.
Applying this to DevOps in the research software space means algorithmists, simulations
experts, analysts, managers, etc., must dedicate time away from regular milestone-driven
activities to learn what the DevOps paradigm shift actually is, what changes in thinking it
requires, and what kind of activities it entails. This can be done, in part, through studies and
discussions of books such as The DevOps Handbook, The Phoenix Project, The Unicorn
Project, or Continuous Delivery—S10.

This author points out a secondary problem—software development activities
fall below research priorities. In reference to story S6 regarding the conversion from
nosetests to pytest:

As software projects mature, so, too, should their support for modern technology. In this
case, once the main test driver was announced to no longer be supported or updated, it would
have benefited the scientific software development team to begin the transition to a newer,
regularly maintained test driver. Instead, the team relied on the hope that it would continue
to work... Until it didn’t. It is essential for teams to preemptively address these concerns
rather than wait—S6.

The overarching consensus for cultural issues throughout these stories: the exper-
tise of the DevOps developers needs to be given the same priority as those of the
domain scientists.

5.3 Team Policies and Processes

Software quality is dependent on the effectiveness of a project’s DevOps practices,
but this goes further than just quality—culture also plays a critical role [37]. As stated
by Perera et al.: “Culture is another important factor because it changes the way in
which teams work together and share the responsibility for the end users of their
application.”

As detailed above, one author contributes to a package with dozens of sub-
packages and thousands of configuration combinations. In their case, the difficulties
in testing lead directly to poor teaming dynamics:

Developers are frustrated while the DevOps team has an endlessly growing backlog of work.
While this automation is better than no CI testing, it has resulted in poor teaming dynamics
and a large maintenance burden. Additionally, this DevOps team is so busy maintaining
configurations and keeping the infrastructure running that they have no time (or available
options) to improve the infrastructure. As a result, teaming dynamics continue to digress,
and it is difficult to retain team members—S5.

Teaming dynamics can be strained more with changing policies and procedures,
though the risk may pay off in the long run. One author details their package’s shift
from subversion to git and hosting on GitHub:

The more mature a project is, the more likely there has been turmoil over changing tech-
nologies. For example, one package created by [laboratory] scientists started on subversion

DevOps Pragmatic Practices and Potential Perils … 639

and a [internally]-hosted repository for many years before transitioning to GitHub. In the
subversion days, developers would commit directly to the main branch, which led to fre-
quent bugs, breakage, or repository pollution. ... When the team eventually transitioned to
GitHub, pull requests and code reviews were added into the development workflow. Initially
this caused conflict on the team as it slowed down the development speed and introduced
“extra overhead.” This change, however, improved the overall stability of the code base. ...
The code reviews also generally have raised the quality of the code base. This has allowed
developers and maintainers to shift focus to improving existing infrastructure and modern-
izing the code and its dependencies and has allowed a larger community of contributors to
add their contributions without lowering the quality of the package—S11.

This example highlights two main points: (1) change can be difficult but overall
bring about better processes and stability, and (2) buy-in is essential for adopting
team policies. Once fully adopted, solid team policies can save a team from disaster.
Another author provides a perfect example:

A graduate student intern collaborating with [laboratory] researchers was traveling to a
customer meeting to demonstrate their software product, including very recent updates to
the tool and presentation. During travel, the student’s laptop—the primary machine used
for development—was stolen. Fortunately, members of the team had diligently maintained
comprehensive remote version control systems. Upon arrival at the meeting location, the
presentation, software tool, and demonstration were downloaded to a colleague’s system,
reverted to a stable version, and operations proceeded with minimal disruption. Customers
who were unfamiliar with the team’s version control practices were thoroughly impressed
at the team’s resilience given the circumstances—S12.

This same author goes further to say, “Incorporating DevOps best practices into
workflows hedges against unforeseen catastrophe. The initial investment and learning
curve associated with applying these strategies routinely—especially for scientists
who may feel little need to otherwise learn “software development” skills—has the
potential for serious payoff in the long run.”

5.4 Institutional Support

Providing institutional support for development opportunities (professional and tech-
nical) is a key contributor to retention of staff and staff happiness [7]. In particular,
providing opportunities for staff recognition, growth, and ability to influence the
organization’s direction through implementing cultural changes, teaching new best
practices, and advancing an organization’s shared understanding of DevOps best
practices can boost retention and create a sense of belonging.

Professional development opportunities can come in different forms: taking train-
ing, developing training, community building, etc. There has long been a history of
software developerswithin CSE teams being fragmented in their work [38]. This type
of fragmentation primarly affects access to professional development opportunities
that would improve the overall state and trustworthiness of scientific software. As
one author points out:

640 R. Milewicz et al.

The problem is we have a long history of insufficiently funding and staffing the [software
development] activities that would solve our issues and prevent them from happening again
in the future—S10.

In their study, Raybourn et al. foundmuch of the same: “The next opportunity area
for incentivizing software quality engineering as part of a culture’s practice comes in
the allocation of funding for quality in software projects. In interviewswith personnel
from two distinct Centers, lack of monetary resources was the most-frequently stated
challenge facing developers. Participants mentioned fragmentation, competition for
funding, lack of rewards for development work, etc. As one participant plainly stated,
“You can’t have quality without the money to pay for it.”” [39]

Institutional support is necessary not only for direct development activities, but
also training. One such author was fortunate to be financially supported in creating
and delivering a training for Git:

Running a 2-hour long workshop and teaching others about Git was a first for me. Once the
reality sank in and I was getting ready for the talk and the hands-on activity, I realized that
I didn’t know the tool as well as I ought to to be able to present to others with any sense
of authority. I asked around for resources and compiled the important topics to cover. From
practicing Git for about a decade now, I knew how to use it and navigate its documentation
to get the work done, but I did not feel comfortable answering questions on the spot about its
nuances. Being confronted with my lack of knowledge forced me to better my understanding
of Git and it allowed me to become a more proficient user—S13.

This activity provided the author with the ability to not only inform others, but
also strengthen themselves as a developer.

5.5 Open Questions

– How can we document and standardize our deployment process to make it even
easier to release and deploy software for researchers without DevOps training?

– How do you find the time/funding to make such drastically large changes?
– Is it possible to get funding agencies to start requiring technical debt reduction
plans as part of the proposal process? How do we promote a culture of mutual
ownership of technical debt?

– Howdowe build a culture among thosewho identify as scientists first that software
best practices should be adopted and adhered to, even when the initial investment
is high?

– How do you appropriately allocate time and resources for making small incre-
mental changes in an effort to avoid technical DevOps debt accumulation and
poor teaming dynamics?

– Can knowledge sharing among development teams be encouraged by creating
formal roles for people doing DevOps work? What would that look like?

– Are there tools that can help with code clone detection at production-scale?
– Is there a well-defined process that already exists (code agnostic, of course) that
tackles the problem of duplicate tests?

DevOps Pragmatic Practices and Potential Perils … 641

6 Analysis

The stories recorded above offer a window into DevOps practice at a major scientific
institution. In this section, we seek to ground those experiences in the scholarly
literature around DevOps in industry to draw out similarities and differences to
DevOps inCSE contexts. In Table1, we provide summaries of the key lessons learned
in each story; these recommendations may be valuable for computational scientists,
engineers, and those doing DevOps work in CSE contexts.

We first compare the challenges faced and addressed by our participants to those
commonly attested in the scholarly literature on DevOps practice. Using Khan et
al.’s systematic review of challenges to adoption of a DevOps culture as a guide,
we found support in our stories for eight out of the ten most-frequently mentioned
challenges in the literature (see Table2). That is, many of the obstacles encountered
and overcome by our participants are not unique to CSE software development,
which lends credibility to the generalizability of our findings and recommendations.
Successful implementation ofDevOps tools and practices requires addressing quality
in the systems-under-test and the tests themselves (S4, S7, S9, S13), and a lack
of knowledge about DevOps can hinder implementation (S9, S10, S12) or lead to
suboptimal decision-making (S1, S2).WhereDevOps infrastructure exists, it must be
actively maintained to keep it up-to-date (S6, S11) and to manage complexity creep
(S3, S5). Having the support of leadership and buy-in from development teams (S10,
S11) is critical to success, as is promoting communication and collaboration across
teams and organizations (S8).

Next we compare the successes and better practices experienced by our partici-
pants to Akbar et al.’s “prioritization-based framework of the DevOps best practices
based on evidence collected from industry experts.” We found support in our stories
for ten of the twelve top-ranked practices (see Table3). It is worth noting that Akbar
et al. divide their rankings into global vs. local ranks (e.g., overall highest priority vs.
priority within a common category). The top ten globally all fall within the “Culture”
category; we opt to use the top three ranked practices in each local category instead to
diversify the conversation. As shown, besides two relatively industry-centric prioriti-
zations (“microservices” and “tools to capture requests”), all of the other top-ranked
practices are reflected in the stories. DevOps adoption and implementation is seen as
successful within a more collaborative culture with a shared value system (S8, S10,
S11, S13), which is bolstered by the education of both staff and leadership (S12).
The practices succeed only insofar as there is standardized buy-in and adherence
(S1, S8, S10, S11), and constant communication is seen as necessary to minimize
the potential for issues and inefficiencies (S5, S8, S10, S13). Only one story touches
on rapid deployment as a way to receive constant feedback from customers (S2).
When it comes to automation, there is a strong emphasis on the importance of con-
tinuous integration and testing (S4, S5, S6, S7, S9), but this cannot be applied unless
a team can decide what it wants to actually achieve first (S1, S6, S11). Taking this
one step further, DevOps practices are seen as overall more effective when adopted
early while a project is still small (S8, S10, S11, S12) and are more successful with

642 R. Milewicz et al.

Table 1 Summaries of lessons learned from the stories generated during the storytelling exercise.

Story Topic Summary

S1 Align Tools and
Methodologies

Teams can be highly productive when their DevOps tooling
matches with and supports their development methodology.

S2 Embrace Virtualization
and Interactive Media
for Deployment

Technologies like containerization (e.g., Docker) and
interactive computing media (e.g., Jupyter notebooks)
enable projects to rapidly deploy CSE software to
customers.

S3 Adopt Dependency
Managers

As CSE software ecosystems continue to grow and mature,
emerging dependency management solutions like Nix and
Spack can help manage that complexity.

S4 Use a Mix of Testing
Strategies to Ensure
Code Quality

While CI/CD is effective at catching certain kinds of bugs,
it is not a panacea. It is important to test across different
environments and configurations with different tiers of
testing and to design software to be more testable.

S5 Maintain Good Tooling
to Have Good Teaming

Inefficient, fragile, and complex infrastructure drains the
energy and morale of DevOps practitioners. Refreshing and
incrementally improving infrastructure is vitally important
for effective teaming.

S6 Manage Test
Infrastructure

Teams must proactively maintain their build and test
infrastructure, as it is guaranteed to fail eventually.

S7 Design Software for
Testing

CSE software modules and components should be built
with testing in mind, such as by having common interfaces
against which tests can be written.

S8 Address Human
Communication Bugs

As projects scale up, it becomes essential not only to put in
place DevOps infrastructure but also to build out processes
and practices to facilitate coordination between teams.

S9 Leverage Static Analysis
and Formal Methods

Some of the worst, most complicated software bugs can be
prevented through automated software analyses, ranging
from built-in type-checking to robust theorem proving tools.

S10 Promote Shared
Understanding for
Culture Change

For DevOps efforts to succeed, there needs to be a shared
understanding throughout the organization of what the
DevOps paradigm shift actually is, what changes in
thinking it requires, and what kind of activities it entails.

S11 Build Consensus Around
DevOps Tools and
Practices

Mature projects accrue inertia around existing tools and
practices, and securing buy-in on new tools and practices is
essential for adoption to succeed.

S12 Teach DevOps Practices
and Principles

DevOps practitioners should educate their peers on best
practices, both to reinforce their own knowledge and to
improve the state of practice in their institutions.

S13 Plan for Resiliency Getting CSE teams to adopt DevOps tools and practices
helps guard against unexpected catastrophes, and this
should be emphasized as a benefit of having those tools and
practices in place.

DevOps Pragmatic Practices and Potential Perils … 643

Table 2 Common cultural challenges to implementing DevOps in organizations (as identified by
Khan et al. [17]) attested and/or mitigated in the stories we collected.

Common cultural challenges Discussed/mitigated in stories

Lack of collaboration and communication S8

Lack of skill or knowledge about DevOps S9, S10, S12

Culture of blame (criticism) –

Lack of intentional DevOps approach S1, S2

Lack of management support S10

Trust and confidence issues S10, S11

Complicated infrastructure S3, S5

Poor quality S4, S7, S9, S13

Security issues –

Legacy infrastructure S6, S11

Table 3 Top-ranked DevOps practices (as identified by Akbar et al. [18]) mirrored in the stories
we collected

Prioritized cultural practices Discussed in stories

Collaborative culture with shared goals S8, S10, S11, S13

Readiness to utilize a microservices
architecture

–

Education of executives S12

Prioritized sharing practices Discussed in stories

Standardized processes and procedures S1, S8, S10, S11

Continuous feedback to address issues and
inefficiencies

S5, S8, S10, S13

Reduce batch size to increase communication S2

Prioritized automation practices Discussed in stories

Decide what to do first S1, S6, S11

Continuous integration and testing S4, S5, S6, S7, S9

Use tools to capture every request –

Prioritized measurement practices Discussed in stories

Effective and comprehensive
measurement/monitoring

S4, S9

Start DevOps on small projects S8, S10, S11, S12

Integrated configuration management S2, S3

frequent monitoring and adaption of practices as a project matures (S4, S9). They
can also lead to better ease-of-use when there is a cohesive and integrated system for
managing dependencies and environments (S2, S3).

Overall, we see a trend that DevOps practices and perils align across industry and
CSE contexts—however, within CSE, there are necessary adjustments. For example,

644 R. Milewicz et al.

while our participants agreed with the necessity for standardized processes and pro-
cedures, the scope differs. In industry, this standardization is desired across the entire
organization; for CSE, it’s enough for the standardization to be across a project or
projects that collaborate. They also do not need to be completely standardized; rather,
they should be appropriately scaled as funding and expertise allow. CSE teams can
succeed by applying appropriately scaled practices to their projects, but they must
avoid the perils that come with either trying to do too much or too little.

Open questions remain surrounding how to do this adaptation in a scaleable,
reproducible manner. For CSE projects that start as completely exploratory and state-
of-the-art, at what point does the team “scale up” their DevOps practices?What tools
and methods for continuous integration should be applied at each stage of maturity?
How often should a research code release and deploy, and what does operations and
maintenance really look like after the fact? These are all potential future avenues for
research.

7 Threats to Validity

As with every study, this one has its threats to its validity. We will discuss three such
potential threats here: (1) generalization; (2) qualitative nature of the data; and (3)
personal biases.

The authors (and participants) in this study all come from the same institution
and have similar job types. This presents a threat in being able to widely generalize
the results. In particular, we cannot say for certain that all DevOps practitioners who
collaborate with CSE teams will have these same views; however, we have aimed to
mitigate this by pairing the authors’ experiences with support from peer-reviewed
and gray literature.

As for the second threat, all data presented here is purely qualitative. It can be
difficult to establish concrete trends and conclusions; however, as with all studies, we
consider this a trade-off. For this study, we believe the stories encapsulate a fuller,
richer, and more complete picture of what DevOps work looks like in practice.
Additionally, similar to the previous threat, we have attempted to mitigate this with
peer-reviewed and gray literature to provide more breadth of experience to our own.

As a final note, we want to call out the potential of our own personal biases.
Because the authors themselves are the participants, we recognize the potential to
skew the results based on our assumptions and feelings rather than actual fact. To
mitigate this, we collectively reviewed perspectives and content contributed by each
other. In this way, we aimed to minimize possible bias while still preserving the
expressed opinions.

DevOps Pragmatic Practices and Potential Perils … 645

8 Conclusion

The DevOps movement may have its roots in industry, but it has branched into scien-
tific software development. As software becomes more integral to the advancement
of science, so do the processes and procedures used to create scientific software.

In this article, the twelve authors shared thirteen unique stories of their experi-
ences as DevOps practitioners within CSE teams within Sandia National Labora-
tories, including lessons learned and residual open questions. Using a participatory
action research approach, we combined these stories with gray and peer-reviewed lit-
erature to analyze the commonalities and differences between industry and scientific
software DevOps practices.

We found that many practices and perils are mirrored. CSE teams experience the
same cultural challenges as industry while emphasizing similar priorities on testing,
collaboration, and starting early. With that in mind, DevOps practices cannot be
perfectly applied out-of-the-box to a CSE project. There needs to be adaptation,
education, and buy-in to create success.

DevOps in theCSEcontext is a research realm that is rich in unanswered questions.
We shared some of these, as well as lessons learned, to add to and promote further
conversation around pragmatic practices and potential perils in scientific software
development.

Acknowledgements Illustrations used with permission from thenounproject.com by Kamin
Ginkaew, Adrien Coquet, Numero Uno, and Gregor Cresnar.
Sandia National Laboratories is a multimission laboratory managed and operated by National Tech-
nology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell Inter-
national, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-NA-0003525. SAND2022-16099C.

References

1. Joseph E (2020) SC20 update on the ROI and ROR from investing in HPC. https://www.
hpcuserforum.com/ROI/

2. Douglas K, Stephen L, Irene Q (2018) Exascale computing in the United States. Comput Sci
Eng 21(1):17–29

3. Wilhelm H, Leslie C, Simon H, Heather P, Thanassis T (2020) Open source research software.
Computer 53(8):84–88

4. Heise C, Pearce JM (2020) From open access to open science: the path from scientific reality
to open scientific communication. SAGE open 10(2):2158244020915900

5. Arne J,WilhelmH (2018) Software engineering for computational science: past, present, future.
Comput Sci Eng 20(2):90–109

6. Tennant JP, Agrawal R, Baždarić K, Brassard D, Crick T, Dunleavy DJ, Evans T R, Gardner N,
Gonzalez-Marquez M, Graziotin D et al (2020) A tale of two ’opens’: intersections between
free and open source software and open scholarship

7. Mundt M, Beattie K, Bisila J, Ferebaugh C, Godoy W, Gupta R, Guyer J, Kiran M, Malviya-
Thakur A, Milewicz R, Sims B, Sochat V (2022) For the public good: connecting, retaining,
and recognizing current and future RSEs at national organizations (under review). In: Special
issue on the future of research software engineers in the US. Comput Sci Eng

https://www.hpcuserforum.com/ROI/
https://www.hpcuserforum.com/ROI/

646 R. Milewicz et al.

8. Mundt M, Milewicz R (2021) Working in harmony: towards integrating RSEs into multi-
disciplinary CSE teams. In: Proceedings of the 2021 workshop on the science of scientific-
software development and use. U.S. Department of Energy, Office of Advanced Scientific
Computing Research

9. MundtM, SochatV,KatzDS,Gesing S,MelessaVergaraVG (2021)DOE software stewardship
challenges in diversity, professional development, and retention of research software engineers.
In: Responses to the request for information on stewardship of software for scientific and high-
performance computing. U.S. Department of Energy

10. KellyDF (2007)A software chasm: software engineering and scientific computing. IEEESoftw
24(6):120–119

11. Leonardo L, Carla R, Fabio K, Dejan M, Paulo M (2019) A survey of DevOps concepts and
challenges. ACM Comput Surv (CSUR) 52(6):1–35

12. Chevalier JM,BucklesDJ (2019) Participatory action research: theory andmethods for engaged
inquiry. Routledge, Milton Park

13. Lutters WG, Seaman CB (2007) Revealing actual documentation usage in software mainte-
nance through war stories. Inform Softw Technol 49(6):576–587

14. Davis J, Daniels R (2016) Effective DevOps: building a culture of collaboration, affinity, and
tooling at scale. O’Reilly Media, Inc

15. Mueller E (2010) What is DevOps?
16. Bernholdt DE, Cary J, HerouxM,McInnes LC (2021) Position papers for the ASCRworkshop

on the science of scientific-software development and use. Technical report, USDOE Office of
Science (SC)

17. Khan MS, Khan AW, Khan F, Khan MA, Whangbo TK (2022) Critical challenges to adopt
DevOps culture in software organizations: a systematic review. IEEE Access 10:14339–14349

18. Azeem Akbar M, Rafi S, Alsanad AA, Furqan Qadri S, Alsanad A, Alothaim A (2022) Toward
successful DevOps: a decision-making framework. IEEE Access 10:51343–51362

19. Hal F, Ben B, Robinson P, Saswata H-M, Bill S (2021) Responses to the request for information
on stewardship of software for scientific and high-performance computing. Technical report,
USDOE Office of Science (SC)

20. Beattie K, Gunter D (2021) Useful practices for software engineering on medium-sized dis-
tributed scientific projects

21. Dubey A (2020) When not to use agile in scientific software development. In: The 2020
Collegeville workshop on scientific software

22. Ellingwood N, Rajamanickam S (2020) Practices and challenges of software development for
a performance portable ecosystem. In: The 2020 collegeville workshop on scientific software

23. Finkel H (2020) The many faces of the productivity challenge in scientific software. In: The
2020 Collegeville workshop on scientific software

24. Windus T, Nash J, Richard R (2020) Scientific software developer productivity challenges from
the molecular sciences. In: The 2020 Collegeville workshop on scientific software

25. De BayserM, Azevedo LG, Cerqueira R (2015) ResearchOps: the case for DevOps in scientific
applications. In: 2015 IFIP/IEEE international symposium on integrated network management
(IM), pp 1398–1404

26. de Bayser M, Segura V, Azevedo LG, Tizzei LP, Thiago R, Soares E, Cerqueira R (2022) Dev-
Ops and microservices in scientific system development: experience on a multi-year industry
research project. In: Proceedings of the 37th ACM/SIGAPP symposium on applied computing,
pp 1452–1455

27. Gesing S (2020) Increasing developer productivity by assigning well-defined roles in teams.
In: The 2020 collegeville workshop on scientific software

28. Adamson R, Malviya Thakur A (2021) Perspectives on operationalizing scientific software.
In: The 2021 collegeville workshop on scientific software

29. Patton MQ (2002) Qualitative research & evaluation methods. Sage, Newcastle upon Tyne
30. Titus B, Sumit G, Mario J (2022) Storytelling and science. Commun ACM 65(10):27–30
31. Polletta F, Chen PCB, Gardner BG, Motes A (2011) The sociology of storytelling. Ann Rev

Sociol 37(1):109–130

DevOps Pragmatic Practices and Potential Perils … 647

32. Reason P, Bradbury H (2008) Handbook of action research: participative inquiry and practice.
Sage, Newcastle upon Tyne

33. Fran B, Colin MD, Danielle S (2006) Participatory action research. J Epidemiol Commun
Health 60(10):854

34. Ralf K (2017) Sixty years of software development life cycle models. IEEEAnnal Hist Comput
39(3):41–54

35. Alexander IF, Beus-Dukic L (2009) Discovering requirements: how to specify products and
services. Wiley, New York

36. Kanewala U, Bieman JM (2014) Testing scientific software: a systematic literature review.
Inform Softw Technol 56(10):1219–1232

37. Perera P, Silva R, Perera I (2017) Improve software quality through practicing DevOps. In:
2017 seventeenth international conference on advances in ICT for emerging regions (ICTer),
pp 1–6

38. KatzDS,McHenryK,ReinkingC,HainesR (2019)Research software development&manage-
ment in universities: case studies from Manchester’s RSDS group, Illinois’ NCSA, and Notre
Dame’s CRC. In: 2019 IEEE/ACM 14th International Workshop on Software Engineering for
Science (SE4Science), pages 17–24. IEEE, 2019

39. Raybourn E,Milewicz R,MundtM (2022) Incentivizing adoption of software quality practices.
Technical report, Sandia National Laboratories (SNL-NM), Albuquerque, NM

	 DevOps Pragmatic Practices and Potential Perils in Scientific Software Development
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology
	5 Results
	5.1 Software Development Lifecycle
	5.2 Testing
	5.3 Team Policies and Processes
	5.4 Institutional Support
	5.5 Open Questions

	6 Analysis
	7 Threats to Validity
	8 Conclusion
	References

