SAND2025-09923R

@ Sandia National Laboratories

Operated for the United States Department of Energy
by National Technology and Engineering Solutions
of Sandia, LLC.

Albuquerque, New Mexico 87185
Livermore, California 94550

date: August 8, 2025
to: Distribution
from: Alvin Chen ® (1558), Michael R. Buche ® (1558)

subject: Efforts to stabilize composite localization elements

Abstract

Localization finite elements seek to provide a robust framework for modeling ductile failure.
They utilize the same constitutive model as the bulk material through the introduction of a
length scale in a specialized deformation gradient that regularizes displacement discontinuity.
Similar to many other elements, localization elements exhibit locking and associated pressure
oscillations under incompressible plastic flow, which is a critical issue when attempting to
model pressure-driven damage evolution. These issues can be drastically improved through
what are essentially reduced integration techniques for the Jacobian and pressure, but there
seem to be pressure-related instabilities that persist and are specific to localization elements.
This memo summarizes recent efforts to mitigate and understand this problem, mostly for the
12-node composite wedge localization element in particular. At this point, it remains unclear
whether the pressure fields within any localization element can be sufficiently stabilized in
order to properly model failures that include softening or fracture.

Background
The Helmholtz free energy A of a body () containing a localization surface is postulated as
/A(F, Z)dV = Z/ A(F,Z) dV+/A(F,Z)hdS, (1)
Q :l: Qi N

where F is the deformation gradient, Z are the internal state variables, {24 is the body above
or below the localization surface I, in the reference configuration, and h is a length scale [1].
The localization surface is primarily described by the discontinuous displacement jump [¢]
in the current configuration, as shown in Fig. 1. The deformation gradient is postulated as

F = FIF+, (2)
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(a) Reference configuration (b) Intermediate configuration (c¢) Deformed configuration

Figure 1. Schematic of a body undergoing an internal localized surface deformation.

where F!l is the membrane deformation and F' is the transverse deformation, and the
mutliplicative decomposition is motivated by that observed in single-crystal plasticity [1].
The membrane deformation is given by that for an embedded surface,

Fl=g,2G"+noN, (3)

which is formulated in terms of the surface tangent basis, dual basis, normal vectors in the
deformed and intermediate configurations. The transverse deformation is given by

FL:I+@®N, (4)

where [¢] is the displacement jump in the intermediate configuration, also shown in Fig. 2.
Note that the intermediate configuration is necessary to ensure that the deformation gradient
in Eq. (2) is objective, as opposed to Yang et al. [1]. Further, Eq. (2) can now be rewritten
as an additive decomposition which does not involve the intermediate configuration,

F:g#®G“+n®N+@®N, (5)

which leverages the relation [¢] = FlI[¢] as well as the fact that G* = G# and N = N.
Briefly, the introduction of a separate length scale ¢ in Eq. (1) has been considered. This
would weight a separate energetic contribution from the membrane deformation, while A
weights another separate contribution from the transverse deformation and regularizes the
displacement jump. Unfortunately, this separation was incompatible with clearly defining
an energy such as Eq. (1) and created numerical difficulties, so it was not pursued further.
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F = FlIF+

Figure 2. Kinematics of the deformation corresponding to a localization surface.

The 12-node composite wedge localization finite element was developed to be compatible
with the 10-node composite tetrahedral finite element from Foulk III et al. [2], so it used a
similar functional representation of the energy. For the localization surfaces only, this is

. PP = [

A(F,Z)hdS+/P:(F—F)hdS, (6)

r

where F is a separate deformation gradient that is constrained to equal F through the
Lagrange multiplier P. Discretizing via nodal coordinates x, and basis functions N,, the
mid-surface is X, = 3(x} + x, ) and the displacement jump is [x,] = x — x;, as in Fig. 3.
The deformation gradient in Eq. (5) can then be written in terms of gradient operators as

F = BiX, + B (Xa) + B, [x] = Bj(%a) + By [xa], (7)

where unfortunately, B‘a' still depends on x, due to the nonlinear dependence of n on x,, i.e.,

__ B1Xgo __ ON, L1 . . .
n =1 e where g, = 96 Xa- Conversely B, = 7 N,N is quite simple, so the nodal forces

_ I _
Rf:lfpzal?“hdSi/PNNadS, (8)
2 Jr 0x, r

produce a term that resembles nodal forces for cohesive surface elements [3] via traction PN.
However, the two are still quite different since the traction for cohesive surface elements
depends on displacements and specialized cohesive zone models, while the traction here
depends on a specialized deformation gradient and the same constitutive model as the bulk.
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(a) Localization element topology (b) Localization element discretization

Figure 3. Mesh topology and discretization of a composite localization element.

Eq. (8) is often rewritten in terms of the projected gradient operators B, and the stress P
evaluated at the projected deformation gradient F, where the projection refers to quantities
at each linear subelement being projected to a linear parent element [2]. Much of B, can be
pre-computed, but part of it cannot due to the dependence on n described earlier [4]. The
Jacobian is also projected to the four integration points for optimal integration weights [2].
These calculations are considerable but are not detailed here. The composite localization
element was implemented within Sierra/Solid Mechanics [5], and they were typically inserted
into an existing mesh similarly to cohesive surface elements using Exomerge [6].

For the examples in this memo, we use, unless specified, the model problem of a notched
bar under tension. The bar has a height of 60 mm, the ends have radius 15mm, and the
middle notch has a minimum radius of 5mm. The material has Young’s modulus £ =
1.17 x 10° MPa, and Poisson’s ratio v = 0.33. The material is governed by a J2-plasticity
model with linear hardening, a yield stress of 5.64 x 10> MPa and a hardening modulus of
1.07 x 103 MPa. The bar is meshed using 10-node composite tetrahedrons and a single layer
of wedge localization elements through the mid-section (see Fig. 4).

Lower-order projection and stabilization

For problems in plasticity and with nearly-incompressible materials, it is found that using
the formulation (6) results in volumetric locking. In order to alleviate some of the locking,
we follow the approach in [2] and introduce a lower-order projection for the pressure and the
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(a) Notched bar mesh (b) Magnified localization elements

Figure 4. Representative example of a mesh used for the notched tension problem and a
magnified plot showing the corresponding localization elements (deformed).

Jacobian in a five-field functional:

o JN\Y?
e, F, P, p*, J¥] :=/A ((—_) F,Z) hdS
r J
+/13 : (F—F)hdS-i—/p*(j—J*)hdS, (9)
r r
where J = detF, p* is the projected pressure, and J* is the projected Jacobian. After

taking the variation of IT*[-] and requiring it to be stationary, we obtain the weak equilibrium
equations and projection relations

/ (P : Grad(d¢)) hdS =0, (10a)
T
j* 1/3 _ 1 o 5 L B B

/ (7) (P - §tr(Pl_?T)F—T + Jp*F—T> —P| :0FhdS =0, (10b)
T

/ (i_tr(PFT) — p*) 6J" hdS =0, (10c)
r \3J

/(F—F) 6P hdS =0, (10d)
I

/ (J — J*) 6p* hdS = 0, (10¢)
T

. SN1/3 .
where F = (%—) F and P = g—’g. After simplifying, the discrete nodal forces are given by
R / IN (5 Lairi— o gpir): (Lo 185\ has, ()
= —_ — —1r : —
O 3 b 20%, @ ’
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(a) Pressure field without low-order projections  (b) Pressure field with low-order projections

Figure 5. Contour plots of the pressure field for elements without lower-order
projections and contours of the pressure using lower-order projections.

where BLI and Bi are the projected gradient operators. In Fig. 5, we show the effects of
using the lower-order projection for a relatively small deformation. The plots show that the
pressure (hydrostatic stress) fields are much smoother when using the lower-order projec-
tions. However, the instabilities in the field remain and will become more pronounced as
the deformation increases. Using lower-order projections are insufficient to eliminate the
volumetric locking and pressure instabilities in the localization element [7].

Similar to the composite tetrahedron [2], when a lower-order projection of the pressure is used
on the localization element, additional spurious zero-energy modes appear in the element
stiffness matrix of a single element. A stabilization term is added in to the functional

K (‘77) hds, (12)

where K(-) is a non-negative convex function satisfying K (1) = 0. The function K is
chosen so that it penalizes the functional whenever J* differs from .J; however, when J* = J
(elementwise constant) the stabilization contribution vanishes and the element satisfies any
linear patch test. Details of the implementation and choice of stabilization function are
found in [2].

Mg, B, P, 5" J*] = [, B P, *, J°] +/
N

Hyperelastic-type stabilization

In the previous section, we utilized the stabilization developed in [2]; however, we found
that this approach was not sufficient to eliminate all the zero-energy modes of the com-
posite localization element. In particular, by examining a linear eigenvalue analysis over a
single element, we found that the 12-noded localization element has 14 spurious zero-energy
modes. After applying the stabilization in (12), there are still 12 spurious modes remaining.
Upon assembly with other elements, the global stiffness matrix no longer has zero-energy
modes; however, 3 low-energy modes remain. These low-energy modes are excited by certain
boundary conditions and lead to nonphysical deformations.

-6-
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We now consider an alternative approach, given in [8] for the mean-strain hexahedral element
and in [9, 10] for the virtual element method. For simplicity, we show the construction of
a stabilization for (6); however, for the examples we apply the procedure to (9). We start
with a standard energy potential [, A(F,Z)hdS and formally write

/A(F, Z)hds — /A(F,Z) hdS+/A(F,Z) hds —/A(F,Z) has.  (13)
r r r r

The first term controls the kinematics and the consistency, while the remaining terms give a
measure of the stability or error. To control the stability, we only need to approximate the
second and third terms:

~

/A(F,Z)hdSz /A(F, Z)hdS+/A(F,Z)hdS— /E(F,Z)hds, (14)

r

where Z(, -) is the Helmholtz free-energy density of a secondary stabilization material. The
choice of g(, -) is unspecified; however, it should be chosen to be representative of the original
material. For our tests, we use a J2-plasticity model for the primary material and a scaled
hyperelastic neo-Hookean model for the stabilization material. One concern with using a
hyperelastic stabilization material for plasticity problems is that the hyperlastic energy will
dominate the energy and stiffen the solution. We expect that using the same material model
with differing properties will result in more accurate and stable solutions. Further treatment
of the plasticity case is found in [10].

This now motivates the definition of a modified energy functional:

~

e, F,P] := /FA(F, Z)hdS+/FE(F,Z)hdS-/FX(F,Z)hdSJr/FP : (F—F)hdS. (15)

The terms using F can be computed with the same approach from the previous section;
however, the term involving F will need to be computed over subtriangles. That is, for each
localization element I'gp and any function f we have

3
f(F)hdS=>"[ f(F)hdS,
T'e 5—o /I3

where I'2, (S = 0,1,2,3) are the associated subtriangles of an element. On each subtriangle,
we apply a Gaussian quadrature scheme to compute the integrals. By solving an element
eigenvalue problem, we find that using a 1-point integration gives in an element stiffness
matrix with 9 spurious modes, while using a 3-point integration results in only 3. Therefore,
we focus on a 3-point quadrature rule in our tests.

In Fig. 6, we plot the deformation and pressure field of a layer of localization elements. We
find that without stabilization, the mid-edge nodes around the boundary move upwards,
similar to the hourglass modes in underintegrated elements (see Fig. 6(a)). In Fig. 6(c), we
show the deformation when using the stabilization. We find that the stabilization scheme

7
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(a) Deformation, no hyperelastic stabilization  (b) Pressure field, no hyperelastic stabilization
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(¢) Deformation with hyperelastic stabilization (d) Pressure field with hyperelastic stabilization

Figure 6. Contour plots comparing the deformation and the pressure field for the
standard stabilization and additional hyperelastic stabilization.

reduces the spurious motion of the midedge nodes; however, there are signs of element
buckling instabilities (over stiffness). The pressure field remains oscillatory in both cases,
which suggests that the pressure instabilities are independent of the displacement (inf-sup
instability).

In the present approach, we apply the stabilization directly to a multi-field functional. After
taking the variation of this functional, stabilization terms will be directly embedded in the
associated stress. Further investigations of this stabilization attempt applied to (9) reveal
that the pressure is directly influenced by the choice of stabilization parameters and will
converge to an incorrect pressure field. However, in the original formulation given in [8, 9],
the multi-field functional is first written as a single-field displacement based functional by
statically condensing all of the additional fields. The stabilization technique is then applied
to the single-field functional and the corresponding stress remains unaffected by the choice
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of stabilization. Initial studies show that this original approach is difficult to apply to the
five-field functional (9); however, we give an alternative stabilization in the next section.

Alternate Stabilization

For the five-field formulation (9), directly adding in a stabilization to the functional results
in many mixed terms in the definition of the projected quantities. This adds complexity to
the formulation and implementation. Instead, we introduce a modified stabilization scheme
by applying the stabilization to the weak equilibrium equations given by (10a). Motivated
by the hyperelastic-type stabilization (14), we add and subtract stress terms derived from a
Helmholtz free-energy density A(, )):

J

(P : Grad(dp)) hdS =~ / (P : Grad(dp)) hdS

r

1 y (16)
0A 0A
+/F <8_F : Grad(écp)) hdS—/F (8_1_7‘ ; Grad(égo)) hdS.
Then we define the stabilized weak form as
L DA 0A
/FP.5thS—|—/F<8—F.5F> hdS—/F<a—F.5F) hdS =0, (17)

where [}, P : 0F hdS is given by the orthogonality condition in (10b). After simplifying, the
nodal forces are given by

TN 1 - 108!
* = — P——tr(PFOF T+ JpF 1) . | ===
we=[(7) (pogeere e ) (55

i (108 i (108
+/8A- —m?“iBj has— [ 24 —al?“iBj hdsS.
r 2 0%, 2 0%,

OF r OF
For simplicity, we choose A to be the strain energy density derived from a scaled neo-
Hookean material. We can either use the same elastic material properties @ and x from the
bulk material

+ Bj) hdsS
(18)

[ %

. 1 _ 1

A=p 5 <§(J2—1) —an> +g<tr(C)—3> , (19a)
or use modified material pro_perties it and & -

) (& /1 7 _ T

A=p g (§(J2—1)—lnj> +g(tr(C)—3> , (19b)

where C is the isochoric part of the Cauchy-Green tensor. Careful selection of the modified
material properties is needed to ensure that the stabilization term does not overly stiffen
the results. Performing a linear eigenvalue analysis, we find that using a 1-point quadrature
on each subtriangle gives 3 spurious zero-energy modes and 8 relatively low energy modes,
while using a 3-point scheme retains the 3 spurious modes but does not have the lower energy
modes. Therefore, we again use a 3-point integration for the following examples.

9
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(a) No stabilization (b) Hyperelastic stabilization (¢) Alternate stabilization

Figure 7. Side view of deformation for localization elements with fixed A = 0.1 mm while
utilizing different stabilization methods.

We first compare the performance of the two stabilization techniques. In Fig. 7, we examine
the deformation of localization elements with and without the use of stabilization. We find
that both the stabilization methods reduce the appearance of the hourglass-type deformation.
Further testing showed that the two approaches give nearly identical deformations when using
the same stabilization material.

In Fig. 8, contour plots comparing the pressure fields of the nonstabilized to the stabilized
elements are given. The localization element is assumed to have a length scale h = 1 mm.
The plots show that the nonstabilized element suffer from large buckling and dimpling in
the deformation. The two stabilized methods eliminated these instabilities for the shown
time step. However, we note that magnitude of the pressure of the first stabilization is much
lower than the other two (see Fig. 8(b) and 8(c)). This mismatch is because of an additional
mixed term found in the variational pressure relation of the first scheme.

One problem with using a stabilization is the need to choose a suitable scale factor to
minimize the effects of hourglass-type modes while not overconstraining and overstiffening
the physical deformation modes. In Fig. 9, we show the deformation of a collection of
localization elements when using the stabilization material (19a) with the scale factors 5 =
0.05,0.1,0.2. For # = 0.05, the nonphysical modes are reduced but still visible on both

(a) No stabilization (b) Hyperelastic stabilization (¢) Alternate stabilization

Figure 8. Contour plots of the pressure for localization elements with fixed h = 1 mm
while utilizing different stabilization methods.
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(a) B = 0.05 (b) B=0.1 (¢) B =02

Figure 9. Side view of a larger deformation for localization elements with fixed
h = 0.1mm and different stabilization coefficient 5 for (19a).

top and bottom surfaces, while with § = 0.1 the modes seem to flip between the two
surfaces. Once = 0.2, some of the elements buckle and completely fail (see Fig. 9(c)). This
shows that overstiffening the element with a large stabilization parameter can lead to severe
element instabilities. These instabilities closely resemble the material hourglass modes of
the enhanced element formulations explored in [11]. In [10], it is suggested that /5 should
decrease as the material hardens during plastic deformation.

Localization elements in general

In the previous sections, we found that adding a stabilization term can improve the defor-
mation fields in some cases but can also introduce other complications and doesn’t seem to
improve the pressure fields. Therefore, in this section, we study different examples using the
five-field formulation (9) without any stabilization.

We first examine the effects of different h values on the pressure fields of the localization
element. In Fig. 10, the contour plots of the pressure field for four values of h are given. The
plots show that for a fixed mesh, the pressure fields begin to lock and oscillate as A — 0.
For bigger h, the fields appear smoother; however, we note that Fig. 10(a) shows buckling
instabilities in the deformation. This suggests that choosing A too small will result in locking
of the pressure, but having A too large leads to nonphysical kinematics. We further study
these effects in following examples.

We study the effects of h on the kinematics in the normal direction. We plot the deformed
state of the localization element for the notched tension problem using different values of h
in Fig. 11. We find that increasing the length scale h softens the element and allows for it
expand in the out-of-plane direction. Taking h smaller will restrict the motion in the normal
direction and as h — 0, the elements can only deform in-plane.

We next consider the effects of h on the tangential kinematics of an object. We solve the
problem of a compressible neo-Hookean block (v = 0.0) subjected to a displacement on the
top and bottom edge. The block is modeled as two layers of tetrahedral elements connected
by a layer of localization elements. In Fig. 12, plots of the deformed block are shown for a fully

-11-
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Figure 10. Contour plots of the projected pressure p* for different h on a fixed mesh.

tetrahedral mesh and meshes including the localization elements with different h. We find
that for h = 1 mm, the two tetrahedral layers slide past each other without any interactions.
As h — 0, the deformation with localization elements converges to the deformation with only
tetrahedral elements. This implies that for meshes using localization elements, the length
scale h should initially be small to not interfere with the deformation of the bulk elements.

We now test the effects of changing the mesh size while fixing a value of h. Contour plots of
the projected pressure p* for a fixed length scale h = 0.1 mm with varying mesh refinements
are shown in Fig. 13. The plots seem to indicate that for a given h, refinement will smooth out
the pressure fields. In Fig. 14(a) a magnified plot shows that the oscillations do appear but are
greatly reduced for the refined mesh. However, Fig. 14(b) shows additional deformation of the
refined mesh results in large oscillations in pressure. This suggests that while refinement can
temporarily improve the pressure fields for a fixed deformation state, instabilities reappear
upon further deformation.
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Figure 11. Comparison of the normal deformation of a plate for different h.

In earlier studies, it was shown that a hexahedral localization element with a mean dilata-
tion formulation provided smoother pressure fields and more robust behavior at the cost of
more difficult meshing. As a comparison, we rerun some tests on meshes with similar sized
hexahedral localization elements. In Fig. 15, we plot the contours of the hydrostatic stress
on a fixed mesh with varying length scales h.

We also plot the contours plots of the hydrostatic stress on meshes of different refinements
in Fig. 16 and magnified plots in Fig. 17. The plots show that, while the hexahedral elements
have smoother stresses in some cases, similar instabilities are present when A — 0 or in large
deformations.

Remark 1 We note that while both the composite wedge elements and the hexahedral local-
ization elements have instabilities for h — 0 or for large deformations, their appearance in
the contour plots are different. For the composite wedge element, the pressure instabilities
appear as oscillations between neighboring elements, known as the checkerboard instability.
While in the hexahedral elements, the hydrostatic stress oscillates between multiple elements
and creates the appearance of a smoother solution (compare Fig. 10(d) and 15(d)).
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(a) Tetrahedral (b) h=1mm

(¢) h = 0.01 mm (d) h = 0.0001 mm

Figure 12. Plots of the tangential deformation of a plate for different h.

In the previous examples, we looked at the pressure fields of a material in the plastic (nearly-
incompressible) regime and found that the solution is very sensitive to the length scale h.
It is expected that for compressible materials, there are no pressure instabilities and so no
sensitivity to h. We now consider a simplified problem of a circular plate with two layers of
tetrahedral elements connected by a layer of localization elements. The material is assumed

(a) Coarse (b) Baseline (c¢) Refined

Figure 13. Contour plots of the projected pressure p* for composite localization
elements with fixed A = 0.1 mm and varying mesh refinement.

-14-
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(a) Magnified elements on refined mesh (b) Same mesh in a further deformed state

Figure 14. Contour plot showing a magnification of representative elements in the
refined mesh and another under further deformation.

9.2e+02
[ 800

— 700

[ )
4.5e+02

8.5e+02
[ 800

— 700

— 600

[ -
4.0e+02

hydrostatic_sfress_1
hydrostatic_stress_1

(a) h =1 mm (b) h = 0.5 mm

1.7e+03
[ 1000

— 800

I:ém
4.7e+02

9.7e+02
[ 0

— 800

— 700

[ -
5.1e+02

hydrostatic_sfress_1
hydrostatic_stress_1

(¢) h=0.1 mm (d) h = 0.01 mm

Figure 15. Contour plots of the pressure for different h on a fixed hexahedral mesh.
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(a) Coarse (b) Baseline (c) Refined

Figure 16. Contour plots of the hydrostatic stress for hexahedral localization elements
with fixed h = 0.1 mm and varying mesh refinement.

to follow a compressible neo-Hookean model with Poisson’s ratio v = 0.4. A quadratic
displacement field is applied to the top and bottom surfaces. In Fig. 18, we present contour
plots of p* for h = 0.1,0.01, and 0.0001 mm. The plots show that for a compressible material,
the pressure fields are not sensitive to the length scale parameter going to 0 (h — 0), but
displacement instabilities appear for sufficiently large h. This suggests that taking h small
adds constraints to the deformation and leads to volumetric locking for nearly-incompressible
materials, while taking h large excites displacement modes (nonphysical zero-energy modes
or material instability modes) independent of the compressibility of the material.

From all these examples, we suspect that connecting the composite wedge localization ele-
ment to bulk elements overconstrains the motion and results in volumetric locking (failure
of the inf-sup condition) when the material becomes incompressible. From (5), the deforma-
tion gradient has all the components representing in-plane and transverse motion; however,
it does not have any of the components corresponding to out-of-plane shear. The missing
shear components restrict how the localization elements can deform in shear, while the bulk
elements do not have this restriction. This results in the localization element having fewer
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(a) Magnified elements on refined mesh (b) Same mesh in a further deformed state

Figure 17. Contour plot showing a magnification of representative elements in the
refined hexahedral mesh and another under further deformation.
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(a) h = 0.1 mm (b) h = 0.01 mm (c) h = 0.0001 mm

Figure 18. Contour plots of the projected pressure p* for a compressible neo-Hookean
material with different values of h.

degrees of freedom that can be used to satisfy the incompressibility condition and produce
the correct deformation. Thus, under sufficient incompressibility and non-uniform deforma-
tion, the two types of elements can no longer consistently deform in a way that keeps the
volume constant. By starting with a larger value of h, the localization elements have more
freedom to move in both the normal and tangential directions (see Fig. 11 and 12) which
allows for easier satisfaction of the incompressibility condition; however, this comes at the
cost of displacement instabilities and nonphysical motion. Similar problems occur for the
fully-integrated isoparametric hexahedral element which does not have sufficient deforma-
tion modes to enforce near-incompressibility or bending. One solution is using an enhanced
assumed strain approach [12, 13], where additional incompatible strain modes are selectively
added to soften the element and reduces volumetric and shear locking. However, in some
cases it was shown that having these incompatible modes between elements introduced non-
physical instabilities in large deformation [11, 14, 15]. Another possibility is to use a mixed
method with an independent pressure. But it was shown that these elements do not al-
ways satisfy an inf-sup (LBB) stability condition and the resulting elements can exhibit the
checkerboard pressure mode [16].

Remark 2 For this work, we fized the length scale h to be constant for all elements; however,
in the original localization element [1], the length scale evolves according to a variational
principle. It was shown that h will change over time and depends on the current deformation
state. Using the variational principle adds complexity and restricts the element to certain
problems. Our initial attempts to replicate a nonconstant h by applying an update for each
timestep resulted in solver convergence issues.

Conclusion

In this memo, we studied an extension of the localization element that is compatible with
the 10-node composite tetrahedron. The resulting element is a 12-noded wedge with four
composite subtriangles. On each subtriangle, the deformation map is assumed to be piece-
wise linear and continuous across elements. The deformation gradient and the First Piola-
Kirchoff stress are constructed to be linear on the parent element but discontinuous between
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elements. To alleviate some symptoms of volumetric locking, a five-field functional using
lower-order constant projections for the pressure and Jacobian was used. However, even
with the lower-order projections, we found that this element continued to suffer from pres-
sure checkerboarding and nonphysical hourglass-type deformations. While investigating the
eigenvalues of the linearized element stiffness matrix, we found that the element produced
14 spurious zero-energy modes. Using an initial stabilization technique following [2] reduced
the number of spurious modes to 12. To further reduce the number of spurious modes, we
introduced two energy-based stabilization schemes following [8, 9]. By using these schemes
and a 3-point Gauss quadrature on each subtriangle, only three excess zero-energy modes
remained. This reduced the severity of hourglass-type deformation modes; however, the
pressure checkerboarding and instabilities were unaffected. Since the use of a stabilization
did not seem to influence the pressure, we investigated the length scale h inherent to the
localization element. We first examined the case where the mesh is fixed and h is varied.
We found that decreasing h leads to highly oscillatory pressure fields, while increasing h
introduces instabilities in the deformation. In addition, using a large value of h resulted
in overly large deformations in the normal and tangential directions. Next, we tested the
case with a fixed h and varying the mesh density. The results showed that mesh refinement
does appear to smooth out the pressure fields at a given deformation state; however, the
instabilities reappear after further loading. These problems are shared between both the
composite wedge and the hexahedral localization elements, so we suspect that the missing
shear components of the localization element, combined with near-incompressibility results
in an overstiff response (locking) and pressure instabilities. Another potential issue is that
the length scale h cannot be a fixed value and should evolve under deformation. In the orig-
inal formulation, the factor A was chosen at each step to enforce an equilibrium condition,
but by fixing h the resulting solutions may not be physical.

In this work, we found that by choosing suitable stabilization parameters, the buckling
and nonphysical deformations can be reduced; however, stabilizing the deformation is not
sufficient to prevent volumetric locking or satisfy an inf-sup stability condition. Therefore,
other techniques such as using inf-sup stable mixed elements [16], higher order methods and
enhanced strain approaches [12] should be investigated. Other common methods used to
smooth out pressure checkerboarding in fluid flow problems is to add in a pressure jump
stabilization [17] or a residual based stabilization [18]. These terms penalize the spurious
pressure oscillations and lead to smoother solutions but require specialized implementation.
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