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Abstract

Elastomeric materials contain many individual polymer chains crosslinked together, forming a poly-
mer network. The rubber-like elasticity of these networks is primarily due to the entropic elasticity
of the long polymer chains and weak intermolecular interactions above the glass transition tem-
perature. New, important elastomeric materials are actively researched today, such as those that
incorporate bond breaking to enhance mechanical properties. These emerging materials challenge
us to develop physically-founded constitutive models to gain predictive power and a more funda-
mental understanding. This dissertation presents the development of such models, starting from
the statistical mechanics of a single chain and ending with the mechanics of the polymer network.

This dissertation begins with an additional contribution: a combined experimental and theoreti-
cal study of a metallopolymer and its mechanical properties. Neutral ligands are added to a polymer
containing metal-coordination crosslinks, where the ligands bind at the metal centers, altering the
crosslinking strength and allowing the macroscale mechanical properties to be tuned. Density func-
tional theory is utilized to quantify the mechanics and thermodynamics of the crosslinks under this
addition of ligands, in order to predict and understand observations from experimental mechanical
tests. Accurate theoretical predictions are made when varying the number of added ligands, and
qualitative conclusions are drawn in the case of varying the ligand type.

Next, the methodical development of a constitutive model for polymer networks without bond
breaking is presented. A careful statistical mechanical treatment highlights the important con-
nection between the single-chain mechanical response and the equilibrium distribution of chains
in the network, as well as the correspondence between different thermodynamic ensembles. Using
an example single-chain model, these effects are directly studied. This statistical theory is then
brought into the continuum scale, where the stress is obtained in terms of the applied deformation
and molecular parameters, and the effects of statistical correspondences are again studied. The
resulting framework serves as a directly physically-linked constitutive model for elastomers and
hyperelastic materials in general.

Following this, an asymptotic theory is presented for the statistical thermodynamics of classically-
treated systems with strong interaction potentials. This development can be understood as the low-
temperature analog of the well-established high-temperature perturbation theory. The asymptotic
theory is applicable to approximating the mechanical response of single polymer chains, as well as
to molecular modeling in general.

The primary contribution in this dissertation focuses on another meticulous approach applied
to a polymer network with bonds that break, whether reversibly or irreversibly. Beginning with the
fundamentals of nonequilibrium statistical mechanics, classical transition state theory is extended
to account for a continuous distribution of polymer chain extensions. In the process, an important
connection is established between mechanically-sensitive reaction rates, mechanical response, and
equilibrium distribution. Moving to the macroscale, the second law of thermodynamics is shown
to be arbitrarily satisfied and the relation for the stress is obtained, once again in terms of the
applied deformation and molecular parameters. With the general framework complete, a single-
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chain model is specified: the Morse-FJC model, a freely-jointed chain of Morse bonds, is introduced
and asymptotically developed. The single-chain mechanical response and reaction rate functions are
studied across a range in parameters. An original exact solution to the integro-partial differential
equation governing the evolution of the network is presented. Two specialized versions of the general
constitutive model – rate-independent irreversible breaking and transient breaking – are developed
and applied to exemplary polymers from the literature. The general model is compared to these two
specializations, a parameter study of the general model is performed across a wide range of molecular
parameters, and finally the general model is applied to another polymer from the literature. The
successes and shortcomings of the model are discussed considering all these results, and motivation
for future theoretical development is provided.
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Chapter 1

Introduction

Elastomers are bulk materials consisting of many single polymer chains crosslinked together to form
a polymer network. Due to the entropic elasticity of the long polymer chains, weak intermolecular
interactions above the glass transition temperature, and the crosslinking of the network, elastomers
tend to exhibit rubber-like elasticity [1]. Elastomers are characteristically compliant, elastic, and
resilient; the attribute “elastomeric” is typically understood to be synonymous with “rubber-like.”
Elastomers occur naturally (for example, polyisoprene) and are made synthetically (for example,
polybutadiene), finding everyday applications such as in shoes, tires, seals, and adhesives, as well
as in cutting-edge technology like biomaterials and soft robotics.

Research on elastomers often focuses on improving mechanical properties and attaining new ma-
terial behaviors using one or more polymer networks. Here, the focus will specifically be on polymer
networks designed to benefit from bond breaking. Taking advantage of the energy dissipation that
occurs when breaking bonds, materials may be strengthened, toughened, and made more stretchable
through the incorporation of sacrificial networks [2–9]. This bond breaking can also be designed
to provide additional functionality, for example mechanoluminescence [10–12] or chain-lengthening
[13–16]. A range of reversible bonds may be utilized, allowing polymer chains to break and reform
in the network. Reversible breaking permits similar properties as irreversible breaking, like high
stretchability and toughness, while simultaneously permitting new properties like self-healing and
reproccessability [17–19]. For example, alginate-based gels contain ionic crosslinks that break down
as the polymer is deformed but reform later, allowing repeated cycles of high energy dissipation
[20]. Metal-ligand interactions with inherent tunability [21] can provide a precise method to con-
trol bulk mechanical properties [22–28]. Control of material behavior can also be achieved using
dynamic reversible bonds, which can be triggered by an external stimulus. Vitrimers behave as
elastic solids at low temperatures but flow as viscous liquids after elevating the temperature, all
while maintaining network integrity [29–32]. Some covalent adaptable networks use light or pH
as the external stimulus, triggering the bond dynamics in order to control things like the material
shape [33–38]. Combinations of reversible and irreversible bonding are often quite useful, such as
the mixture of chemical and physical bonds [39–47]. In general, these emerging elastomeric mate-
rials are rate-dependent, mechanically-nonlinear, and chemically-sensitive, which then warrants a
truly physically-based constitutive model in order to maintain predictive power and fundamental
understanding across different materials systems. An approach using statistical mechanics can lead
to such a model.

1
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1.1 Mechanics of polymer chains

The mechanical response of a single polymer chain can be described by the end-to-end force as a
function of the end-to-end length. At finite temperatures, a nonzero force is required, on average,
to increase the end-to-end length of a polymer chain, even in the absence of bond stretching. This
thermodynamic force results from the reduction in available configurational entropy as the chain
is extended [48], which is quantified using Boltzmann’s entropy formula. Equilibrium statistical
mechanics, also known as statistical thermodynamics [49], provides the fundamental tools necessary
to determine the mechanical response of polymer chains using single-chain models: idealized models
that represent real polymers [50]. The most common of these single chain models is the freely-jointed
chain (FJC) model [51], where rigid links are connected in series and rotate freely (no potential
energy change) about their connecting hinges. In the case of an applied force, the mechanical
response of the FJC is given by the Langevin function [1], and in the case of an applied extension, the
mechanical response may be written using series expansions [52]. Analogous to the noninteracting
gas of classical statistical thermodynamics, the results obtained using different thermodynamic
ensembles will generally differ, but should shrink as the number of links in the chain grow [53]. As
this number continues to grow, the chains begin to obey Gaussian statistics [54, 55], and for small
extensions, the mechanical response of the chain becomes linear, i.e. the ideal chain model [56].

As the freely-jointed chain (or any other single-chain model with rigid links) is extended towards
its contour length, the required thermodynamic force becomes infinite as the number of available
configurations approaches unity. In reality, highly-extended polymer chains would begin to expe-
rience bond stretching at or before this point, so a more physically-realistic single-chain model is
required. For example, the FJC model can be generalized to the extensible freely jointed chain
(EFJC) model by replacing the rigid links with stiff harmonic springs [57]. Statistical thermody-
namics still handles these cases, but now the canonical ensemble and Helmholtz free energy must
be utilized in place of the microcanonical ensemble and Boltzmann entropy [49]. Overstretching
results in chain breaking from forces becoming large enough rupture bonds, however, the principles
of statistical thermodynamics have not yet been properly applied to these cases. While extension-
dependent reaction rates have been proposed previously [58–60], a proper and general formulation
has yet to be determined, leaving researchers to assume a form, typically inspired by Bell [61]. Upon
specification of a single-chain model with breakable bonds, a proper formulation would yield com-
plete information about the chemical kinetics of breaking, in addition to the single-chain mechanical
response. Further, since most single-chain models are not analytically tractable like the FJC model,
there is a need for a systematic approach to approximate single-chain mechanical responses. The
current method [62] works well, but relies on a heuristic technique that is not entirely compatible
with the principles of statistical thermodynamics, so a more rigorous method is desirable.

1.2 Mechanics of polymer networks

When constructing a model for the polymer network, the most important characteristic of elas-
tomers to recall is that of weak intermolecular interactions [1]. Ignoring intermolecular interactions
completely, single-chain models can be utilized in modeling the network. Next, some distribution of
chains must be chosen to represent the arrangement of chains creating the network. For example, a
discrete distribution of chains could act as a representative element, such as done with the 3-chain
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[52, 63], 4-chain [64, 65], 8-chain [66, 67], and 21 chain [68, 69] models. A continuous distribution of
chains provides a more realistic picture, where some models assume that all end-to-end lengths are
initially the same and distributed angularly [70, 71], and others additionally consider a distribution
of end-to-end lengths [59, 60, 72]. Critically, a clear connection between the distribution of chains
creating the network and the underlying single-chain model has not yet been established, though
obtaining equilibrium distributions using statistical thermodynamics is well understood [49]. In
any case, polydispersity (varying contour lengths) may also be included within discrete [73–75] or
continuous [76–78] chain arrangements.

After creating the network model using the single-chain model and an initial distribution, the
evolution of the distribution under an applied deformation must be considered. An affine or non-
affine deformation of the distribution can be prescribed, where in the latter case, non-affinity can
be a fundamental aspect of the initial distribution [66] or based upon some physical constraint [68,
79, 80]. The evolution equations for the network are then completed after including the effects
of bond breaking, typically done using transient [60] or irreversible damage [81] models. The
Helmholtz free energy of the network is then formulated, and usually the Coleman-Noll procedure
[82, 83] is utilized to verify that the second law of thermodynamics is satisfied and obtain a relation
for the Cauchy stress, completing the development of the constitutive theory for the mechanics
of the network. Many constitutive models for polymer networks have been developed along this
mechanistic pathway, and together perform well for a range of materials. However, no modeling
approaches have meticulously carried the statistical mechanics of a general single chain model
through to the macroscale. Such an approach would inextricably connect (1) the single-chain
mechanical response, (2) the initial distribution of chains in the network, and (3) the extension-
dependent breaking rates to an arbitrary single-chain model. As a result of these connections, the
obtained constitutive relations for the mechanics of the network would be almost entirely determined
by the single-chain model. A deeply physical basis such as this provides both a fundamental
understanding of the material and a predictive modeling approach.

1.3 Dissertation overview

Immediately following this introduction are four self-contained chapters containing fundamental
theories for the mechanics of polymer chains and networks, which address many of the previously
discussed gaps in the literature. The final chapter highlights these contributions and discusses
relevant future research directions. Three extensive appendices appear afterward, which contain
additional experimental data, extended derivations, source code, and example scripts. A list of
references appears at the end of the dissertation.

In Chapter 2, a combined experimental and theoretical study of a metallopolymer and its me-
chanical properties is presented. The metallopolymer in this study is synthesized using nickel cations
and carboxylate anion monomers to crosslink an acrylic copolymer. Neutral ligands are introduced
to the material to bind at the nickel centers, offering a facile method to tune the strength of the
crosslinking and thus the macroscale mechanical properties. As the number and type of ligands
added to the material vary, density functional theory is utilized to quantify the mechanics and ther-
modynamics of the crosslinks. These theoretical findings are then used to predict and understand
the mechanical properties of the material observed in experiment. Overall, density functional theory
provides a nearly complete understanding when varying the number of added ligands, but provides
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limited understanding when varying the ligand type. Important conclusions are drawn concerning
the effects that ligand-environment interactions have on the macroscopic mechanical properties,
providing a starting point for future theoretical investigation. In Appendix A, supplementary ex-
perimental data and theoretical results and details are provided, including unpublished mechanical
testing data.

In Chapter 3, a fundamental constitutive theory is developed for the mechanics of polymer
networks, beginning from the statistical mechanics of a single polymer chain. This constitutive
theory stands out from previous theories, as it permits an arbitrary single-chain model to be utilized
while still satisfying statistical correspondences that are discussed. Using the extensible freely-joined
chain model as an example, the effects of these correspondences – those between the single-chain
mechanical response, the equilibrium distribution of chains in the network, and the thermodynamic
ensemble – are highlighted at both the single-chain and macroscopic level. Importantly, the efficacy
of two approximations methods in the macroscale are studied, where it is showed that either method
matches the exact method as the number of links becomes sufficiently large. In Appendix B,
extended derivations for this manuscript are provided. This framework is an effective and highly
physical three-parameter (one being the modulus) constitutive model, for elastomers and other
hyperelastic materials. An intuitive, efficient, open-source computational implementation (Python)
of the model is given at the end of Appendix B.

In Chapter 4, a theory is developed to asymptotically approximate the equilibrium statistical
mechanics of systems with stiff degrees of freedom, i.e. strong potential energies of interaction.
This classical theory is presented as the low-temperature analog of the high-temperature pertur-
bation developed by Robert W. Zwanzig in 1954. Though the motivating application is modeling
the stretching of polymer chains, this theory is expected to make a broader impact in molecular
modeling.

In Chapter 5, a fundamental constitutive theory is developed for the mechanics of polymer net-
works that undergo bond breaking, whether reversible or irreversible. Similar to Chapter 3, this
theoretical development begins with the statistical mechanics of a single polymer chain and ends
with the mechanical response of the polymer network, and the same correspondences are high-
lighted, now including the mechanically-sensitive reaction rate of breaking chains. A second-law
analysis is presented after bringing the statistical theory into the macroscale, where the Cauchy
stress is retrieved and it is shown that the residual dissipation inequality is arbitrarily satisfied.
With the general theory complete, the uFJC model is developed, which is the freely-jointed chain
(FJC) model with stiff, but flexible links of potential energy u. The Morse potential is then imple-
mented and utilized to study the single-chain mechanical response and reaction rate functions across
many molecular parameters. Notably, an original exact solution to the integro-partial differential
equation governing the evolution of the network is presented, with most of the derivation appearing
in Appendix C. Equipped with a complete and exactly-solved framework, Chapter 5 turns to mod-
eling the macroscale stress. After simplifying the model in the two special cases of rate-independent
irreversible breaking and transient breaking, the model is applied to exemplary polymers from the
literature. While finding the irreversible-breaking specialization quite effective, the results find
the transiently-breaking specialization somewhat ineffective, and a supplement utilizing relaxation
functions is suggested. Before applying the general, unspecialized version of the model to another
material from the literature, it is compared to each specialization and a parameter study is per-
formed, permitting the effects that various molecular parameters have on the mechanical response of
the network to be directly understood. In concluding, the successes and shortcomings of this funda-
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mental model are discussed, and improvements for future work are proposed. In Appendix C, many
extended derivations for this manuscript are provided, including previously unpublished derivations
in Appendix C.5. Notably, Appendix C.5.2 extends the general model to cases where chains remain
intact after force-induced reaction, and this extended theory is applied to model the mechanics
of small molecule release occurring in a recently-synthesized double network gel. Appendix C.6
presents an intuitive, efficient, open-source computational implementation (Python) of the general
model, which includes a small library of single-chain functions and relaxation functions, options to
consider the two special cases, and many example scripts. Appendix C.7 contains another version
of this implementation specialized for the small molecule release application.





Chapter 2

Tuning the Mechanical Properties of
Metallopolymers via Ligand Interactions:
A Combined Experimental and
Theoretical Study

Chapter 2 and Appendix A are adapted from: Y. Vidavsky, M. R. Buche, Z. M. Sparrow, X. Zhang,
S. J. Yang, R. A. DiStasio Jr., and M. N. Silberstein. Tuning the mechanical properties of metal-
lopolymers via ligand interactions: A combined experimental and theoretical study. Macromolecules
53, 6 (2020). Y.V. and M.R.B. contributed equally to this work.

Figure 2.1: Depiction of the metallopolymer as ligands
are introduced and bind to the crosslinks.

Metal-ligand interactions provide a means
for modulating the mechanical properties of
metallopolymers as well as an avenue toward
understanding the connection between crosslink
interaction strength and macroscale mechanical
properties. In this work, we used nickel carboxy-
late as the tunable crosslinking interaction in a
metallopolymer. Different numbers and types
of neutral ligands that coordinate to the metal
center are introduced as an easy approach to ad-
just the strength of the ionic interactions in the
nickel carboxylate crosslinks, thus allowing macroscale mechanical properties to be tuned. Density
functional theory (DFT) calculations, with the external forces explicitly included (EFEI) approach,
were used to quantify how the number and type of ligands affect the stiffness, strength, and ther-
modynamic stability of the nickel carboxylate crosslinking interactions. Interpreting the bulk ma-
terial properties in the context of these DFT results suggests that the stiffness and strength of the
crosslinking interactions primarily control the initial stiffness and yield strength of the metallopoly-
mer, while the mechanical behavior at higher strain is controlled by dynamical bond re-formation
and interactions with the polymer environment. The physicochemical insight gained from this work
can be used in the rational design of metallopolymers with a wide scope of targeted mechanical
properties.
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2.1 Introduction

The consolidation of metal cations into a polymer architecture has been demonstrated as an effi-
cient method to modify the mechanical behavior of polymeric materials [23–26]. Organometallic
complexes can function as network crosslinkers [24, 84], as part of a linear backbone [27, 85, 86],
as grafting points [87], as the driving force for phase segregation [88, 89], and even as intrachain
crosslinkers in organic nanoparticles [89–91]. The metal-ligand interactions that form these com-
plexes can vary from weak, dynamic bonds to strong, covalent-like bonds that are effectively static
[85]. This range of bond strengths makes the use of these complexes a flexible and robust ap-
proach for controlling the mechanical properties of polymers [92]. In addition, these complexes can
impart desirable characteristics such as self-healing [18, 93, 94] and stimuli responsiveness [95–97]
that are not usually achievable with covalent bonding alone. Several studies have shown that the
stability and mechanical strength of these interactions in metallopolymers can be tuned by using
either different metal cations or different binding ligands [22–24, 27]. However, tuning the mechan-
ical properties of polymers with these methods often requires new synthetic routes and processing
methods. As such, a facile method is needed for modulating the metal-ligand interaction and hence
the mechanical properties of polymers.

In addition, an understanding of how the nature of metal-ligand interactions influence macroscale
mechanical behavior will allow for more effective materials design to suit specific applications. Metal
complexes fall within a broader class of force-sensitive bonded interactions [18, 22, 86, 91, 98–104].
Extensive computational and theoretical work has been conducted over the past 20 years to quantify
the stiffness, strength, and force-dependent kinetics of mechanochemically sensitive bonds [14, 105–
110]. In this regard, density functional theory (DFT)-based computational approaches such as
COGEF (constrained geometry to simulate forces) [105, 111], AISMD (ab initio steered molecular
dynamics) [112], and EFEI (external forces explicitly included) [107] have been invaluable in the
design of materials that incorporate these bonds [113–115].

In this work, we present a simple technique for easily adjusting the strength of ionic crosslinking
interactions between Ni2+ cations and the carboxylate anions on the backbone of an acrylic polymer.
In particular, we study how the attachment of neutral ligands to the crosslinking metal center
weakens the ionic interaction and alters the macroscale mechanical properties. By combining DFT
calculations with bulk experiments, we provide a fundamental understanding of how changes in the
number and type of ligands can be used to tune the mechanical properties of the bulk polymer.
Theoretical analysis enables us to identify which features of the bulk mechanical behavior can be
tuned by modifying the strength and stiffness of the crosslinks and which features can be tuned
from changing the ligand-environment interactions. These findings have broad implications for
the design of polymers with dynamic crosslinks and the possibility for secondary interactions to
dominate aspects of the mechanical response. In doing so, we provide a facile and rational design
procedure that uses ligands to create a versatile class of metallopolymers with highly tunable bulk
mechanical properties.



2.2. Results and Discussion 9

Scheme 2.1: (top) Copolymer Synthesis with (Ni) and without (Linear) Nickel Crosslinking; (bottom)
Control/Homopolymer Synthesis with (Ni*) and without (Linear*) Dispersed Nickel

2.2 Results and Discussion

2.2.1 Nickel Carboxylate Crosslinked Network
Synthesis and Characterization

All polymers were synthesized by 365 nm UV-initiated free radical copolymerization of the acrylic
formulation in a dog-bone-shaped silicone mold pressed between two laminated glass plates (Figs.
S1 and S2). For the Ni2+ crosslinked network (Ni), the acrylic formulation was prepared by dissolv-
ing nickel(II) acetate tetrahydrate salt (Ni(OAc)2(H2O)4) in a mixture of 2-hydroxyethyl acrylate
(HEA) and 2-carboxyethyl acrylate (CEA); see Appendix A. HEA serves as a hydrophilic neu-
tral monomer, and the CEA reacts with the Ni2+ cations to generate the ionic crosslinker after
removal of the acetic acid under vacuum (Scheme 2.1). The quantity of Ni(OAc)2(H2O)4 was cho-
sen to provide a 1:2 ratio of Ni2+:CEA. The combination of a fast curing process, a hydrophilic
monomer composition that is compatible with the nickel cations, and a synthesized polymer with
a glass transition temperature (Tg) above ambient temperature ensures homogeneous dispersion
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Figure 2.2: Effects of nickel crosslinking on the (a) IR spectrum and (b) uniaxial monotonic stress-strain response.

of the Ni2+ throughout the polymer bulk and suppresses potential phase segregation [116]. The
linear copolymer (Linear) was synthesized under the same conditions without the addition of the
nickel salt. In addition, homopolymers of HEA with and without Ni(OAc)2(H2O)4 were synthe-
sized as controls (Ni* and Linear* in Scheme 2.1), since they cannot generate nickel carboxylate
crosslinkers.

The successful attachment of nickel cations to the carboxylate crosslinkers was determined by
the peak shift of the CQO bond stretching vibration in the IR spectrum. The Linear and Linear*
polymers show only one peak at ∼1724 cm−1 for the CQO stretching vibration of the backbone ester
groups and the free carboxylic acid (Fig. 2.2(a)). For the Ni and Ni* polymers, an additional peak
is present at ∼1581 cm−1, corresponding to the nickel carboxylate bonds [117] in these systems.

Nickel crosslinking in the copolymer results in an increase in the Tg from 33.9 to 42.5 ◦C, as
measured by dynamic mechanical analysis (DMA) (Fig. A.3). In contrast to this relatively small
Tg change, nickel crosslinking has a dramatic effect on the mechanical properties of the copolymer.
Fig. 2.2(b) shows the stress-strain curve of the Ni and Linear copolymers (as well as the Ni* and
Linear* homopolymers) under uniaxial tensile stress at a strain rate of 0.114/s. Here, we find that
the non-crosslinked Linear copolymer presents typical behavior for a lightly crosslinked or entangled
elastomer. By introducing nickel crosslinking, we find that Ni is characterized by a 15-fold increase
in stiffness (4.11 to 62.6 MPa) and yield stress (0.213 to 3.03 MPa) as well as a substantial reduction
in elongation (from 596% to 156%) when compared to the Linear copolymer. This Ni behavior is
reminiscent of a thermoplastic elastomer. Furthermore, the Ni* control homopolymer has only a
slightly stiffer response than Linear*, thereby corroborating our hypothesis that nickel carboxylate
crosslinking is responsible for the dramatic changes in the mechanical properties.

2.2.2 Effects of Ligand Addition

We next sought to modulate the bulk mechanical properties of Ni by altering the stiffness and
strength of the nickel carboxylate crosslinks. Our hypothesis here was that the introduction of
ligands that are higher in the spectrochemical series than water – which originally stabilizes the
octahedral coordination structure of the nickel – would bind more strongly to the metal centers,
displacing some of the bound water molecules into the second coordination sphere. Doing so would
increase the electron density on the metal centers and therefore weaken the ionic nickel carboxylate
crosslinking interactions. As such, we chose imidazole (Im) to investigate first since it is higher in
the spectrochemical series [118] than water and coordinates with Ni2+ cations [23, 84, 119].
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Figure 2.3: Effects of adding neutral imidazole ligands. (a) Theoretically optimized model systems for the nickel
carboxylate crosslinking structure in the absence (Model[Ni]) and presence (Model[Im2]) of two imidazole ligands
(with dotted purple lines indicating hydrogen bonds). (b) Starting with the optimized structure, equal and opposite
tensile forces were applied to the OAc groups in these model systems until one of the nickel-carboxylate bonds
ruptures. (c) Theoretical mechanical responses of the Model[Ni] and Model[Im2] systems using the EFEI approach.
(d) Experimental monotonic stress-strain response in the absence (Ni) and presence (Ni-2Im) of 2 equiv of imidazole.
(e) Experimental cyclic stress-strain response of the Ni and Ni-2Im materials.

To investigate how the introduction of imidazole ligands weakens the nickel carboxylate bonds,
we utilized density functional theory (DFT) calculations (in conjunction with the external forces
explicitly included (EFEI) procedure [107]) to study the structures and energetics associated with
stretching the nickel carboxylate crosslinks in the presence of an external force. All EFEI calcula-
tions were performed on a series of model systems with molecular formula Ni-(OAc)2(H2O)4−n(Im)n,
with decoordinated water ligands kept in the second coordination sphere (for n > 0). The lowest
energy configurations for all of these model systems involved a triplet wave function and an octa-
hedral geometry surrounding the Ni center, with monodentate (κ1) and axial binding of the two
acetate (OAc) ligands. Throughout this work, we will refer to these model systems as Model[Ni]
(for n = 0) and Model[Imn] (for n = 1, 2, 3, 4). Following geometry optimizations of the initial
Model[Ni] and Model[Im2] structures in the absence of any external forces (see Fig. 2.3(a)),
equal and opposite tensile forces (F) of increasing magnitude were applied to the methyl carbon
atoms on the OAc moieties, which were taken to represent the attachment points to the polymer
(see Fig. 2.3(b)). In the presence of these external forces (which were incrementally increased by
∆F = 0.1 nN), these structures were reoptimized for each increment in accordance with the EFEI
procedure [107] to obtain the length change in the nickel carboxylate crosslinking site (taken as
the distance between the methyl carbon atoms on the OAc groups). These applied forces were
increased until one of the nickel-carboxylate bonds ruptured (see Fig. 2.3(b)). All DFT calcula-
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Table 2.1: Theoretically Computed Free Energy Differences (∆G) and Barriers (∆G‡) between the
Intact and Ruptured Configurations of the Model Systems

System ∆G (kcal/mol) ∆G‡ (kcal/mol)

Model[Ni] 5.06 18.13

Model[Im2] 6.29 15.60

Model[MeIm2] 4.68 15.36

Model[Py2] 5.21 16.63

Model[Pipe2] 5.95 16.33

Model[DMA2] 6.51 16.66

tions were performed in Q-Chem (v5.1) [120] using the dispersion-inclusive range-separated hybrid
ωB97X-V functional [121] and the def2-TZVPP basis set [122] (see Appendix A for more details).

As depicted in the theoretically determined mechanical response curves in Fig. 2.3(c), we find
that Model[Ni] has a linear initial response with a stiffness of 4.5 nN/Å (taken as the initial slope)
and a rupture force of 2.2 nN. With two imidazole ligands strongly bound to the metal center, the
initial stiffness and rupture force of Model[Im2] decrease to 3.1 nN/Å and 1.6 nN, respectively.
To consider the possible effect that this change in the crosslink stiffness will induce in the bulk
polymer, we performed a molecular dynamics (MD) simulation to estimate the mechanical response
of the backbone segment between crosslinks (i.e., which is composed of seven repeat units of HEA
monomers on average). This polymer segment was found to have an initial stiffness of 0.4 nN/Å and
a maximum tangent stiffness of 2.4 nN/Å (see Fig. A.4). Given that the crosslink stiffness is within
an order of magnitude of the backbone stiffness, the crosslink will not act as an effectively rigid
connection until rupture; hence, we expect that changes in the crosslink stiffness will influence the
bulk polymer stiffness. The reduction in the crosslink strength should reduce the bulk polymer yield
strength and increase ductility since this crosslink rupture force is below that of a carbon-carbon
bond along the backbone.

These model systems were also used to quantify the thermodynamics and kinetics associated
with rupturing the nickel-carboxylate crosslinks. In particular, we computed the free energy differ-
ences (∆G) and barriers (∆G‡) between the intact and ruptured configurations of the Model[Ni]
and Model[Im2] systems in the absence of external forces (see Table 2.1). To obtain the rup-
tured configuration for each model system, we performed an additional geometry optimization
of the structure produced during the final step of the EFEI procedure (in which one of the
nickel-carboxylate bonds ruptures). With force-free ∆G values of 5.06 kcal/mol (Model[Ni]) and
6.29 kcal/mol (Model[Im2]), our calculations indicate that intact configurations of the nickel-
carboxylate crosslinks are preferred over ruptured configurations at equilibrium (i.e., crosslink rup-
turing processes are not spontaneous). Furthermore, we also found that the forcefree barriers (∆G‡)
to rupturing these model crosslinks were 18.13 and 15.60 kcal/mol for Model[Ni] and Model[Im2],
respectively. This observed reduction in ∆G‡ in Model[Im2] is consistent with our hypothesis that
the introduction of free imidazole ligands will weaken the effective nickel-carboxylate bond strength.
We also note that these ∆G‡ values are large enough such that crosslink rupturing processes will
not occur at room temperature due to thermal fluctuations alone.
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Inspired by these findings, we performed a series of mechanical tests on the nickel carboxylate
crosslinked polymer (Ni) in the presence of 2 equiv of neutral imidazole ligands per cation (Ni-
2Im). Following the expected trends from the DFT calculations, we observed decreases in the
initial modulus (62.56 to 8.36 MPa) and yield stress (3.03 to 0.69 MPa) in going from Ni to
Ni-2Im (Fig. 2.3(d)). Because load is transmitted through the polymer in an indirect manner,
it is expected that these bulk property changes are not directly proportional to the crosslink-
scale changes in initial stiffness and rupture strength; however, it is a bit surprising that an ∼30%
decrease in crosslink stiffness leads to an ∼87% decrease in the bulk polymer modulus. This suggests
that there is a mechanical coupling between the crosslink and the polymer backbone, wherein the
backbone becomes effectively more compliant as the crosslink becomes less rigid. This coupling was
also suggested by the slight decrease in Tg observed upon addition of free imidazole ligands. We
interpret the yield stress as primarily resulting from the sudden rupture of a large percentage of the
crosslinks and the post-yield hardening as largely resulting from the formation of new crosslinks.
Following this interpretation, Ni-2Im requires less stress to break the crosslinks and more time
to re-form them as compared to Ni. Under cyclic loading (Fig. 2.3(e)), both materials exhibit
extensive viscoplastic deformation. There is also a substantial loss in the overall strength of Ni-
2Im, which is visible in the reduced stress of the cyclic stress-strain response as compared to that
of monotonic loading (Fig. A.5). This likely results from an overall loss in intact crosslinks and
perhaps associated chain relaxation. The Ni cyclic stress response shows a dramatic reduction in
yield strength upon each reload but then dramatically hardens to approach its monotonic response
as strain is increased past the prior loading level. This difference between Ni-2Im and Ni indicates
that the crosslinks re-form more slowly when imidazole ligands are bound to the metal center.

2.2.3 Effects of Varying the Number of Ligands

We next sought to obtain further control over these mechanical properties by tuning the number
of ligands that were bound to the metal center. We again chose imidazole as the ligand and
synthesized three additional polymers with 1 equiv (Ni-1Im), 3 equiv (Ni-3Im), and 4 equiv (Ni-
4Im) of imidazole ligands per nickel. The existence of nickel carboxylate crosslinking interactions in
all of the polymers with added imidazole ligands was confirmed by the presence of a CQO stretching
vibrational peak at slightly smaller frequency compared to Ni [117] (∼1560 cm−1 in the IR spectra,
Fig. A.8). In addition, changes in the color of the Ni2+ containing materials (Fig. A.9) further
corroborate the presence of interactions between the imidazole ligands and the metal center. To
study the effects of varying the number of imidazole ligands on the stiffness and strength of the nickel
carboxylate crosslinks, we first needed to investigate how many imidazole ligands were attached to
the metal centers in the Ni-1Im, Ni-2Im, Ni-3Im, and Ni-4Im cases.

To proceed, we used DFT to compute binding free energies (∆Gbind[n]) for the consecutive ad-
dition of n imidazole ligands to the Model[Ni] system (Fig. A.6; see Appendix A for additional
details). Quite interestingly, this theoretical analysis showed that binding the first and second im-
idazole ligands was quite favorable, with ∆Gbind[1] and ∆Gbind[2] values of −4.60 kcal/mol and
−8.34 kcal/mol, respectively. As indicated by the relative magnitudes |∆Gbind[2]| > |∆Gbind[1]|,
binding a second imidazole is cooperative in nature. With ∆Gbind[3] and ∆Gbind[4] values of
−0.80 kcal/mol and 0.53 kcal/mol, we find that it is significantly less favorable to bind a third
or fourth imidazole. We attribute these findings to a both electronic and steric effects, as additional
binding of imidazole ligands increases the electron density on the metal and crowds the complex.
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Figure 2.4: Effects of varying the number of imidazole ligands. (a) Theoretically computed equilibrium population
of the Model[Ni] and Model[Imn](for n = 1, 2, 3, 4) systems as a function of the added number of imidazole
equivalents. (b) Theoretical mechanical responses of the Model[Ni] and Model[Imn] systems using the EFEI
approach. (c) Experimental monotonic stress-strain response of the Ni, Ni-nIm, and Linear materials. (d) Initial
modulus and yield stress of these materials. (e) Experimental stress relaxation response of these materials. (f)
Highlight of the experimental stress relaxation response of Ni-2Im, Ni-3Im, Ni-4Im, and Linear (zoomed in
compared to (e)).

With these ∆Gbind values in hand, we computed the equilibrium populations of Model[Ni] and
Model[Imn] (for n = 1, 2, 3, 4) as a function of the added number of imidazole equivalents (see
Appendix A for additional details). As depicted in Fig. 2.4(a), we find that the equilibrium pop-
ulation of Model[Ni] rapidly decreases as imidazole is added to the system. This is accompanied
by a rapid increase in the population of Model[Im2], while the population of Model[Im1] re-
mains at a small and constant (essentially steady-state) value, which is consistent with cooperative
binding of the second ligand. Following the addition of 3 equiv, we find that the populations of
Model[Im2], Model[Im3], and Model[Im4] converge to ∼16%, ∼60%, and ∼24%, respectively,
which is consistent with the slightly endergonic binding of the fourth imidazole.

As depicted in the theoretically determined mechanical response curves in Fig. 2.4(b) (obtained
by using the EFEI procedure), we find that the initial stiffness and rupture force decrease from
3.1 nN/Å and 1.6 nN (Model[Im2]) to 1.2 nN/ Å and 0.7 nN (Model[Im3]) and 0.74 nN/Å and
0.7 nN (Model[Im4]). We note in passing that the EFEI curve for Model[Im1] was not computed
since the population of this species was negligible (Fig. 2.4(a)). Interestingly, the EFEI curve for
Model[Im4] is relatively flat over a large length change (0.5–1.5 Å); we attribute this to a sudden
extension of the carboxylate moieties, which were folded inward due to non-bonded interactions.
At this point, the response transitions to a more direct pulling on the nickel-carboxylate bonds,
wherein Model[Im4] is now characterized by a stiffness of ∼1.2 nN/Å, and ultimately ruptures at
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0.7 nN (which are the same values as Model[Im3]). All these observations are consistent with our
hypothesis that binding imidazole ligands increases the electron density on the metal and thereby
weakens the ionic nickel carboxylate crosslinks. Consistent with our earlier findings regarding the
free energies (∆G) and barriers (∆G‡) between the intact and ruptured configurations of Model[Ni]
and Model[Im2], we also find that intact configurations of Model[Im3] and Model[Im4] (with
force-free ∆G values of 2.12 and 2.11 kcal/mol, respectively) are also preferred over ruptured con-
figurations at room temperature. With a force-free ∆G‡ = 11.57 kcal/mol for Model[Im3], we also
find that the barrier to crosslink rupturing remains inaccessible at room temperature. We note in
passing that the corresponding ∆G‡ for Model[Im4] was not computed, as the force-free rupture
also involves a multistep mechanism in which the carboxylate groups unfold.

With these theoretical findings in mind, we then performed an additional series of mechanical
tests on the Ni-1Im, Ni-3Im, and Ni-4Im polymers. As depicted in Fig. 2.4(c), we find that
simply varying the number of imidazole ligands allowed us to tune the monotonic stress-strain
behavior between the Ni and Linear polymers. This tuning was accomplished without significantly
altering the Tg of the materials (Fig. A.7). Here, we find that the initial modulus and yield stress
both decrease as the number of imidazole equivalents increases from zero (Ni) to three (Ni-3Im)
(Fig. 2.4(d)). With the addition of 4 equiv of imidazole (Ni-4Im), these quantities level off but
remain slightly above that of the Linear polymer. These findings are consistent with the theoretical
population and EFEI analyses (Fig. 2.4(a,b)), in that (i) the addition of imidazole ligands weakens
the mechanical response of the crosslink structure and (ii) after the addition of 3 equiv these
effects are still present but begin to level off (i.e., once the equilibrium populations converge).
Experimental stress relaxation results (Fig. 2.4(e,f)) show that although Ni-3Im and Ni-4Im have
a similar peak stress to Linear, their relaxation is more substantial as their curves cross over and
continue to diverge from the Linear polymer. Although Ni-2Im starts from a much higher stress,
this polymer also crosses over Linear during the 20 min experimental time frame. These results
support the notion that the nickel carboxylate crosslinks are dynamic in nature, helping to facilitate
stress relaxation by breaking and re-forming.

2.2.4 Effects of Varying the Types of Ligands

As an alternative approach to tune the mechanical properties of these polymers, we now investigate
the effects of varying the types of ligands attached to the metal center. Here we consider four new
nitrogen-based ligands: methylimidazole (MeIm), pyridine (Py), piperidine (Pipe), and dimethy-
lamine (DMA). These ligands were chosen to span options in terms of nitrogen atom hybridization
(sp2 and sp3), bulkiness, and potential for π · · ·X interactions (with X = –H, cation, anion, or
π) and hydrogen bonding with the surrounding polymer environment. In each case, 2 equiv of a
given ligand was added to form the Ni-2MeIm, Ni-2Py, Ni-2Pipe, and Ni-2DMA polymers,
and the nickel-carboxylate interactions were again verified by the position of the carboxylate CQO
vibrational peak in the IR spectra (Fig. A.8). Binding energy calculations (see Appendix A for
additional details) again confirm that the addition of 2 equiv of each ligand to the bulk material
corresponds to an equilibrium population that is almost entirely composed of two ligands bound to
each nickel center (Table A.1).

DFT calculations were again employed to quantify the mechanics and thermodynamics of the
model crosslink structures depicted in Fig. 2.5. The EFEI results predict that adding any two
of these nitrogen-based ligands will decrease the initial stiffness and rupture force with respect to
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Figure 2.5: Theoretically optimized model systems for the nickel-carboxylate crosslinking structure in the presence
of two methylimidazole (Model[MeIm2]), pyridine (Model[Py2]), piperidine (Model[Pipe2]), and dimethylamine
(Model[DMA2]) ligands (with dotted purple lines indicating hydrogen bonds).

Model[Ni] (Fig. 2.6(a)). The theoretical results also predict that the mechanical properties of
the crosslink for this set of ligands are very similar, with the largest observed differences being
∼0.25 nN/Å (initial stiffness) and ∼0.1 nN (rupture force). With ∆G and ∆G‡ values ranging from
4.68 to 6.51 kcal/mol and 15.36 to 16.66 kcal/mol, we again find that intact configurations of these
model systems are preferred over ruptured configurations at room temperature, and the barriers to
crosslink rupturing always remain thermally inaccessible (Table 2.1). The experimentally obtained
monotonic stress- strain responses are presented in Fig. 2.6(b). In the small-strain regime, the
addition of any two ligand equivalents results in a dramatic decrease in both the initial modulus and
yield stress when compared to Ni. However, the differences observed in these properties are rather
small among the different ligand types (Fig. 2.6(c)), which is again consistent with the theoretical
EFEI predictions on the model crosslinks. In the large strain regime, however, the monotonic
stress-strain responses tend to be quite distinct. Since everything except the added ligands was
held constant during the preparation and testing of these materials, and the EFEI calculations
only considered single/isolated model crosslinks (and predicted little to no mechanical differences),
we hypothesize that these large-strain differences are primarily governed by ligand-environment
interactions rather than the mechanical response of the crosslinks.

In fact, one can categorize the stress-strain curves in Fig. 2.6(b) into the following two groups:
(i) group I polymers (Ni-2Im, Ni-2MeIm, and Ni-2Py), which exhibit lower post-yield hardening
and smaller instantaneous moduli (until a rapid increase near fracture), and (ii) group II polymers
(Ni-2Pipe and Ni-2DMA), which exhibit higher post-yield hardening and retain near-constant
instantaneous moduli until fracture. In this categorization, it is clear that the group I polymers
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Figure 2.6: Effects of varying the types of ligands. (a) Theoretical mechanical responses of the Model[Ni],
Model[Im2], Model[MeIm2], Model[Py2], Model[Pipe2], and Model[DMA2] systems using the EFEI ap-
proach. (b) Experimental monotonic stress-strain response of the Ni, Ni-2Im, Ni-2MeIm, Ni-2Py, Ni-2Pipe,
Ni-2DMA, and Linear materials. (c) Initial modulus and yield stress of these materials. (d,e) Experimental cyclic
stress-strain response of these materials. (f) Percentage of recovered energy per cycle in the cyclic stress-strain
experiments.

contain aromatic ligands with sp2-hybridized (metal-bound) nitrogen atoms, while the group II
polymers contain nonaromatic ligands with sp3-hybridized nitrogens. Moreover, differences in color
among the materials made from these ligands (Fig. A.9) show a clear categorization into two dis-
tinct groups in accordance with the sp2 vs sp3 hybridization of the metal- bound nitrogen atom
on each ligand. Because the theoretical EFEI predictions (Fig. 2.6(a)) show negligible differences
in the crosslink mechanical response between ligand types, the hybridization of the (metal-bound)
nitrogen does not seem to be directly responsible for the observed differences in the bulk mechanical
behavior. However, we can correlate the observed experimental differences in Fig. 2.6(b) to the dis-
tinct nonbonded interactions that can occur between the ligands in each group and the surrounding
polymer environment. In other words, the group I polymers contain aromatic ligands which are
capable of forming favorable dispersion (or van der Waals) interactions, π · · ·X interactions (with X
= –H, cation, anion, or π), and hydrogen bonds (in the case of Ni-2Im only) with the environment,
while the nonaromatic ligands in the group II polymers can only form dispersion interactions with
the polymer environment. Unlike dispersion interactions (which are radial and nondirectional), the
π · · ·X and hydrogen bond interactions present in the group I polymers are directional and can
constrain the diffusion of broken crosslinks throughout the polymer environment. As a result, the
rate of dynamic crosslink re-formation in the group I polymers could be substantially lower than
that in the group II polymers. This conjecture is consistent with the monotonic stress-strain curves
in Fig. 2.6(b), in which the group I polymers (following the rupture of many crosslinks at yield) are
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characterized by a lower post-yield hardening (due to the relatively slower crosslink re-formation).
In contrast, the more rapid crosslink reformation in the group II polymers manifests as higher
postyield hardening and larger instantaneous moduli until fracture.

This explanation for the large-strain monotonic features is also consistent with the observed
bulk mechanical responses to cyclic loading. Here, we find that the group I polymers recover much
less than the group II polymers (Fig. 2.6(d,e)), as the residual strain (i.e., at zero stress) after each
cycle is much smaller for group II than group I. We further investigated this point by computing
the percentage of recovered mechanical energy per cycle based on the cyclic stress-strain responses
(Fig. 2.6(f)). From these results, we find that the group II polymers are characterized by a nearly
constant energy recovery, which is consistent with breaking and re-forming a similar number of
crosslinks during each cycle. On the other hand, we find that the group I polymers are characterized
by an initially low recovery percentage that increases rapidly and begins to level off after ∼5 cycles.
This is also consistent with a slower rate of crosslink re-formation among the group I polymers, in
which the energy recovered during each cycle continues to change until most crosslinks are broken.
These group I polymers essentially transition from a viscoplastic response to an elastomeric one as
the crosslinks break, with polymer chains that are effectively linear dominating the response.

Ligand-environment interactions can also be used to rationalize the observed differences within
each polymer group. For instance, the mechanical response of Ni-2Im is noticeably different from
Ni-2MeIm and Ni-2Py. More specifically, Ni-2Im has a higher yield stress than Ni-2MeIm and
Ni-2Py, and maintains this higher stress throughout the strain hardening regime. In this case, the
imidazole ligand in Ni-2Im can form hydrogen bonds with the environment (via the non-metal-
bound nitrogen atom) [123], while the methylimidazole and pyridine ligands in Ni-2MeIm and
Ni-2Py cannot. Furthermore, the similarities between the Ni-2MeIm and Ni-2Py polymers are
especially apparent in the cyclic responses, as their curves overlap to within experimental error.
Considering the group II polymers, we find that Ni-2Pipe has a greater strain hardening slope
than Ni-2DMA. We attribute this greater mechanical strength of Ni-2Pipe to the increased
dispersion interactions between the larger (and significantly more polarizable) piperidine ligand
and the surrounding polymer environment.

2.3 Conclusion

In this work, we have demonstrated a facile procedure to incorporate metal-ligand crosslinking in
UV-curable acrylic polymers. By attaching a series of coordinating neutral ligands to the metal
center, we were able to finely tune the mechanical properties of the polymer. The simplicity of this
approach has enabled a systematic investigation of the effects of changing the number and type of
coordinating ligands on the crosslink without otherwise modifying the polymer. DFT calculations
were used to first determine the number of ligands that would attach as a function of the total
ligands available per metal center and then to investigate the mechanical and thermodynamic
characteristics of the equilibrated metal coordination structures. These calculations predicted that
the strength and stiffness of the crosslink strongly depend on the number of nitrogen-based ligands,
but not on the type. Experimentally, these predictions were borne out in the bulk mechanical
behavior at small strain. However, in the strain hardening regime, large differences were observed
among the materials with different ligands, suggesting that ligand-environment interactions must
also be considered in the rational design process of these versatile and highly tunable polymers.
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Chapter 3

Statistical mechanical constitutive theory
of polymer networks:
The inextricable links between
distribution, behavior, and ensemble

Chapter 3 and Appendix B are adapted from: M. R. Buche and M. N. Silberstein. Statistical
mechanical constitutive theory of polymer networks: The inextricable links between distribution,
behavior, and ensemble. Phys. Rev. E 102, 012501 (2020). The Python package implementing the
model [126] is available on GitHub and PyPI (pip install Buche Silberstein model 2020).

A fundamental theory is presented for the mechanical response of polymer networks undergoing
large deformation which seamlessly integrates statistical mechanical principles with macroscopic
thermodynamic constitutive theory. Our formulation permits the consideration of arbitrary poly-
mer chain behaviors when interactions among chains may be neglected. This careful treatment
highlights the naturally occurring correspondence between single-chain mechanical behavior and
the equilibrium distribution of chains in the network, as well as the correspondences between dif-
ferent single-chain thermodynamic ensembles. We demonstrate these important distinctions with
the extensible freely jointed chain model. This statistical mechanical theory is then extended to the
continuum scale, where we utilize traditional macroscopic constitutive theory to ultimately retrieve
the Cauchy stress in terms of the deformation and polymer network statistics. Once again using
the extensible freely jointed chain model, we illustrate the importance of the naturally occurring
statistical correspondences through their effects on the stress-stretch response of the network. We
additionally show that these differences vanish when the number of links in the chain becomes
sufficiently large enough, and discuss why certain methods perform better than others before this
limit is reached.
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3.1 Introduction

Understanding the mechanics of polymer networks is important for improving and predicting the
mechanical behaviors of a wide range of polymeric materials, from physically-crosslinked rubbers
to mechanochemically-responsive networks. Constitutive models that are grounded in statistical
mechanics are especially useful because they allow the direct incorporation of molecular phenomena
and thus a fundamental understanding of the material. In order to establish a model with such
predictive power, one needs to proceed from the statistical mechanics of single polymer chains all
the way to the macroscopic mechanical behavior of the entire material. The meticulous detail we
offer here is required to retain generality throughout this process.

Polymer network constitutive models often utilize a single polymer chain statistical mechanical
model. The most common of these single chain models is the freely jointed chain (FJC) model
[51], where rigid links are connected in series and allowed to rotate about the connecting hinges
without change in energy. The mechanical response of the FJC under end-to-end extension is
determined by the reduction in configurational entropy, which is then directly connected to the
equilibrium probability distribution of end-to-end lengths by Boltzmann’s entropy formula [48]. For
a large number of links or in the case of an applied force, the mechanical response and probability
distribution of end-to-end lengths may be written analytically using the inverse Langevin function
[1]. In the case of an applied extension, more sophisticated methods are necessary to obtain the
mechanical response and distribution of end-to-end lengths, such as those using series expansions
[52] or those that transform between thermodynamic ensembles [53]. When the number of links
approaches infinity, the probability distribution of end-to-end lengths obeys Gaussian statistics [54,
55], and for end-to-end length much smaller than the contour length, the mechanics of the chain
become that of the ideal, linear chain [56]. When the end-to-end length approaches the contour
length, the FJC becomes infinitely stiff due to its inextensibility. The FJC model can be expanded
to that of the extensible freely jointed chain (EFJC) by replacing the rigid links with stiff harmonic
springs [57]. Now when the end-to-end length approaches the contour length, the EFJC begins
to stretch the stiff harmonic links and subsequently achieves end-to-end lengths greater than the
original contour length, hence it is extensible. Another popular set of models are the freely rotating
chain (FRC) models, where the FJC model is adjusted by fixing all bond angles and only permitting
torsional angles to freely rotate [50]. This model cannot be solved analytically and therefore requires
careful numerical techniques [127]. For small bond angles, the FRC model becomes the Kratky-
Porod (or discrete worm-like chain) model [128], and when the link length additionally becomes small
compared to the contour length, the FRC model becomes the continuous worm-like chain (WLC)
model. Both the discrete and continuous forms of the WLC model have been expanded to include
stiff harmonic springs [129]. Recent single chain constitutive models include covalent bond rupture
[62] and mechanochemically-activated bonds [130]. It is apparent from this vast literature that the
correspondences between end-to-end length probability distribution, the mechanical behavior, and
the applied boundary conditions (thermodynamic ensemble) are of vital significance.

Upon establishing a statistical description by way of single chain mechanics, the model derivation
must then proceed to connect the macroscopic deformation of the polymer network to this single
chain description. This is typically accomplished by way of constructing the Helmholtz free energy
density, prescribing some aspect of the network evolution in terms of the macroscopic deformation,
connecting the network evolution back to individual chains, and using 2nd law of thermodynamics
analysis. Most often the 2nd law analysis results in a hyperelastic model, which means that the
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stress is directly related to the derivative of the free energy density with respect to the deformation
gradient. After choosing a single chain model, the construction of the free energy density for
the network involves the choice of the distribution of initial chain lengths and orientations in the
network. Several models have used discretely-oriented chains to represent the distribution of chains
in the network, such as the 3-chain [52, 63], 4-chain [64, 65], 8-chain [66, 67], and 21 chain [68,
69] models. Other models utilize a continuous orientation distribution of chains to represent the
network, where some assume that all end-to-end lengths are initially the same [70, 71] and others
consider an initial distribution of end-to-end lengths [59, 60, 72]. Polydispersity, i.e. varying
contour lengths, may be included in either the discrete [73, 74] or continuous [76, 77] distribution
formulations. An affine or non-affine deformation of the distribution can be prescribed, where the
non-affinity can be a fundamental aspect of the initial distribution [66] or based upon some physical
constraint [68, 79, 80]. Unfortunately, the natural correspondence between the choice of single chain
model and the chain length distribution within the network tends to be ignored in these models.

Despite decades of work, there remains a need for a methodical and general statistical mechan-
ics derivation of polymer network mechanics such that the assumptions and their implications are
apparent. The approach taken here begins from fundamental statistical mechanics, makes clear all
assumptions and places emphasis on the correspondences between the network distribution, single
chain mechanics, and the different thermodynamic ensembles. Most preceding constitutive models
make no reference to such nuances, and as a result risk making considerable mistakes. Further-
more, there has been no study on the effects that these correspondences have on the macroscopic
mechanical response of the network and when they may be ignored. Such an approach will also
take great care in stitching this general statistical description into the macroscopic description, per-
forming a detailed 2nd law analysis to retrieve the stress and making sure that all neglected terms
are truly negligible. Many preceding constitutive models use considerable assumptions to construct
the stress, lose generality by choosing a specific chain model during the 2nd law analysis, and/or
neglect terms that could contribute to the stress without proof that they can be neglected.

In this manuscript, we present a constitutive model for polymer networks undergoing finite
deformation that is constructed with great detail. We begin in Section 3.2.1 from fundamental
statistical mechanics, ensuring that the correspondences between the distribution of chains in the
network and the mechanics of single chains are understood and accounted for. We also account
for the differences between thermodynamic ensembles, ensuring we utilize the correct ensemble and
understand the correspondence relations that allow us to go from one to the other. Prescribing an
affine deformation to the network distribution, we extend the statistical theory to the macroscale and
perform a detailed 2nd law analysis in order to retrieve the stress in Section 3.2.2. In the process, we
perform many mathematical manipulations in order to maintain the generality of the model. This
includes the proof that a term produced when integrating by parts is indeed zero for relevant chain
models, which has been previously taken for granted. With this detailed framework, in Section 3.3
we are able to study the macroscopic effects of the aforementioned statistical correspondences and
show that they are considerable when chains are not sufficiently long. Throughout the manuscript,
the EFJC model is used to demonstrate the statistical correspondences within the network and
their effects on the macroscopic mechanical response of the network. This framework will prove
useful in constructing future constitutive models for more complicated polymer networks.



24 Chapter 3. Statistical mechanical constitutive theory of polymer networks...

3.2 General theory

3.2.1 Statistical mechanical description

Here we present a statistical mechanical description of an ensemble of noninteracting polymer chains.
The statistical mechanical description naturally provides explicit relationships between the equilib-
rium distribution of polymer chain end-to-end vectors and the Helmholtz free energy of a polymer
chain with a given end-to-end vector; we refer to these as the distribution-behavior correspondence
relations. The original thermodynamic ensemble (Helmholtz) for a single chain is parameterized
by an end-to-end vector, where a simple Laplace transformation allows parameterization by the
end-to-end force in another ensemble (Gibbs). Since we desire results from the Helmholtz ensemble
but are often only able to compute the partition function in the Gibbs ensemble, ensemble trans-
formation relations between the two – both exact and in the thermodynamic limit – are provided.
When obtaining the single chain free energy function and the equilibrium distribution of end-to-end
vectors, we refer to the method that utilizes the exact transformation as the Helmholtz method,
and that utilizing the transformation in the thermodynamic limit as the Gibbs-Legendre method;
see Fig. 5.2 for a schematic. Next, we illustrate these features of our statistical description using
the EFJC model as an example chain model. We complete the statistical theory by formulating the
general evolution law for the polymer network distribution of end-to-end vectors.
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Figure 3.1: Diagram describing the exact (Helmholtz) and approximate (Gibbs-Legendre) methods of arriving
at the single chain Helmholtz free energy ψ∗(ξ) of a chain with end-to-end vector ξ and equilibrium probability
distribution P eq(ξ) of chains with that end-to-end vector. †The Gibbs-Legendre method is approximate since the
necessary Legendre transformation is only valid in the thermodynamic limit of long chains.
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Helmholtz ensemble

The polymer network is taken to be represented by an ensemble of N indistinguishable noninter-
acting polymer chains. The canonical partition function is then

Q =
qN

N !
, (3.1)

where the single chain partition function q is given by a classical integration over the coordinates
qj and momenta pj of each of the M atoms in the chain [49],

q =
1

h3M

∫
· · ·
∫
e−βH

M∏
j=1

d3pj d
3qj. (3.2)

Here h is Planck’s constant and β = 1/bT is the inverse temperature, with Boltzmann’s constant b
and temperature T . The Hamiltonian H of the chain is

H = U(q1, . . . ,qM) +
M∑
j=1

p2
j

2mj

, (3.3)

where U is the potential energy function describing interaction energies between atoms within the
polymer chain, and mj is the mass of jth atom in the chain. The momentum integrations are
completed to write a portion of the chain partition function:

qmom =
M∏
j=1

(
2πmjbT

h2

)3/2

. (3.4)

If we take the atomic coordinates relative to the first atom along the chain backbone, rj = qj −q1,
we can complete the rigid body translation integration – where the chain is translated over the
whole volume – and pick up a factor of V . We now have

q = qconqmomV, (3.5)

where the chain configuration integral qcon is then

qcon =

∫
· · ·
∫
e−βU

M∏
j=2

d3rj. (3.6)

If the M th atom is the last atom along the chain backbone, we seek to calculate the probability
density distribution P eq(ξ) that a chain has the end-to-end vector rM = ξ at equilibrium. This
means that the probability that a chain has the end-to-end vector within d3ξ of ξ at equilibrium
would be P eq(ξ) d3ξ. We then write q∗, the chain configuration integral corresponding to end-to-end
vector ξ, by integrating the Dirac delta function (δ)
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q∗(ξ) =

∫
· · ·
∫
e−βU(r2,...,rM )δ3 (rM − ξ)

M∏
j=2

d3rj, (3.7)

=

∫
· · ·
∫
e−βU(r2,...,ξ)

M−1∏
j=2

d3rj. (3.8)

According to Boltzmann statistics, the probability of a single chain configuration at thermodynamic
equilibrium is e−βU/qcon, so we integrate over all configurations that have the end-to-end vector ξ
in order to retrieve P eq(ξ),

P eq(ξ) =

∫
· · ·
∫
e−βU

qcon

δ3 (rM − ξ)
M∏
j=2

d3rj, (3.9)

=
q∗(ξ)∫∫∫
q∗(ξ̃) d3ξ̃

=
q∗(ξ)

qcon

, (3.10)

where ξ̃ is a dummy variable of integration; the tilde will continue to denote dummy variables of
integration. If this equilibrium distribution is rotationally symmetric (only varies with ξ =

√
ξ · ξ),

we can use the equilibrium radial distribution function

geq(ξ) = 4πξ2P eq(ξ). (3.11)

The chain Helmholtz free energy ψ∗ associated with q∗ is, from the principal thermodynamic con-
nection formula [49],

ψ∗(ξ) = −bT ln q∗(ξ), (3.12)

so we may finally write the equilibrium distribution as

P eq(ξ) =
e−βψ

∗(ξ)∫∫∫
e−βψ∗(ξ̃) d3ξ̃

, (3.13)

which, if ψ∗(ξref) = ψ∗ref is known for some ξref , we have

ψ∗(ξ) = ψ∗ref − bT ln

[
P eq(ξ)

P eq(ξref)

]
. (3.14)

We refer to Eqs. (3.13) and (3.14) as the distribution-behavior correspondence relations, as they
show a one-to-one correspondence between the free energy of a chain for a given end-to-end vector
and the equilibrium distribution of such end-to-end vectors.

Gibbs ensemble

The Gibbs ensemble releases the end-to-end vector constraint of the Helmholtz ensemble and instead
applies an end-to-end force. The Helmholtz ensemble coincides with the canonical ensemble (which
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has the Helmholtz free energy as the principal thermodynamic potential), but the Gibbs ensemble
does not exactly coincide with the isobaric-isothermal ensemble (which has the Gibbs free energy
as the principal thermodynamic potential), despite an applied force seeming to be analogous to an
applied pressure. The naming of the Gibbs ensemble is then perhaps a bit misleading, but we will
continue to use it since it seems to have become standard. The Gibbs ensemble Hamiltonian is

H = U(q1, . . . ,qM) +
M∑
j=1

p2
j

2mj

− f · (qM − q1), (3.15)

where f is the force that acts equally and oppositely on atoms 1 and M at the ends of the polymer
chain, and qM − q1 = rM is the end-to-end vector of the chain. The system partition function and
the momentum partition function take the same form as Eqs. (3.1) and (3.4), respectively, and we
receive the same factor of V from the rigid body translation integration, but the chain configuration
integral corresponding to force f ,

z∗(f) =

∫
· · ·
∫
e−βUeβf ·rM

M∏
j=2

d3rj, (3.16)

=

∫∫∫
q∗(ξ)eβf ·ξ d3ξ, (3.17)

is now utilized. The chain configuration integral corresponding to the Gibbs ensemble is directly a
Laplace transform of the Helmholtz ensemble chain configuration integral. The probability density
distribution that a chain experiences the force f at equilibrium P eq

z (f) is then given by the ratio
of z∗(f) to the integral of z∗(f) over all end-to-end force vectors f . The principal thermodynamic
connection formula yields the Gibbs free energy ϕ∗ associated with the force,

ϕ∗(f) = −bT ln z∗(f), (3.18)

from which we obtain the Gibbs ensemble distribution-behavior correspondence relations:

P eq
z (f) =

e−βϕ
∗(f)∫∫∫

e−βϕ∗(f̃) d3f̃
, (3.19)

ϕ∗(f) = ϕ∗ref − bT ln

[
P eq
z (f)

P eq
z (fref)

]
. (3.20)

Ensemble transformations

It has been demonstrated that the mechanical response of a given polymer chain model can differ
appreciably between the two ensembles if the thermodynamic limit (i.e. chains consisting of suf-
ficiently many links) is not satisfied [53]. This is an issue because while traditional macroscopic
constitutive theories require the Helmholtz free energy of the system, single polymer chain partition
functions are often only solvable, if at all, in the Gibbs ensemble. It is for this reason we require
general formulae to transform one ensemble into the other: Eq. (3.17) allows one to retrieve the



28 Chapter 3. Statistical mechanical constitutive theory of polymer networks...

Gibbs ensemble from the Helmholtz ensemble; its inversion, from Manca, et. al. [53], allows one to
retrieve the Helmholtz ensemble from the Gibbs ensemble:

q∗(ξ) =

(
β

2π

)3 ∫∫∫
z∗(if)e−iβf ·ξ d3f . (3.21)

Eqs. (3.17) and (3.21) are the ensemble transformation relations. In the thermodynamic limit and
under appreciable loads [131–133], fluctuations become negligible and the free energies of the two
ensembles are related by the Legendre transformation

ϕ∗(f) = ψ∗(ξ)− f · ξ. (3.22)

Therefore, in the limit of long chains, the mechanical response of the chain can be obtained equiv-
alently from either ensemble:

f =
∂ψ∗

∂ξ
, ξ = −∂ϕ

∗

∂f
, (3.23)

and the two equilibrium distributions are related by

P eq
z (f)

P eq
z (fref)

= e−β(ψref−ϕref−f ·ξ)

[
P eq(ξ)

P eq(ξref)

]
. (3.24)

Eqs. (3.22) and (3.24) are the ensemble transformation relations in the thermodynamic limit.

Example polymer chain model

In order to demonstrate the above sets of equations, we consider the EFJC model, where the
polymer chain is represented by M = Nb+1 atoms/hinges connected in series by Nb flexible links of
rest length `b and harmonic potential stiffnesses kb. Due to the nonzero potentials, the mechanical
response of this model will be due to coupled contributions from both entropic and enthalpic effects.
The EFJC model has a Gibbs ensemble partition function that can be evaluated analytically: one
form is given by Fiasconaro and Falo [57] as

z∗(η) =

{
B0

sinh(η)

η
eη

2/2κ
[
1 +

η

κ
coth(η)

]}Nb
, (3.25)

where η = βf`b is the non-dimensional force, κ = βkb`
2
b is the non-dimensional link stiffness, and

B0 = 25/2π3/2β`3
bκ
−1/2. For κ → ∞, we recover the freely joined chain (FJC) Gibbs ensemble

partition function [50]. To retrieve the Helmholtz ensemble partition function we use Eq. (3.21),
which in this case (spherically symmetric) as shown by Manca, et. al. [53] reduces to

q∗(γ) =
1

2π2Nb`3
b

1

γ

∫ ∞
0

z∗(iη) sin(Nbηγ)η dη, (3.26)

where γ = ξ/Nb`b is the chain end-to-end length relative to the contour length Nb`b. After using
Eq. (3.26) to calculate q∗, we then use Eq. (3.12) in order to calculate ψ∗ from q∗, and subsequently
Eq. (3.13) to calculate P eq from ψ∗. Although we have started from the Gibbs ensemble, we have
calculated ψ∗ and P eq exactly, which we will refer to as the Helmholtz method (Fig. 5.2, top
pathway).
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Figure 3.2: Non-dimensional free energy per link versus end-to-end stretch for Nb = 3, 5, 10, and 25, for (a) κ = 50
and (b) κ = 5. The free energy is plotted using both the Helmholtz and Gibbs-Legendre methods, as well as using
the ideal model valid for γ � 1; the Gibbs-Legendre and ideal results are independent of Nb.

The Helmholtz method is often computationally challenging, so simpler approximate methods
are typically used. When the thermodynamic limit Nb →∞ is satisfied, the Legendre transforma-
tion in Eq. (3.22) may be used to calculate the Helmholtz free energy ψ∗ from the Gibbs free energy
ϕ∗. We will refer to this method as the Gibbs-Legendre method (Fig. 5.2, bottom pathway). This
method is expedient if ϕ∗ is known exactly, which is true in the case of the EFJC model. The exact
value of ϕ∗ for the EFJC is calculated by plugging z∗ from Eq. (3.25) into Eq. (3.18). To obtain the
mechanical response in order to perform the Legendre transformation, we use Eq. (3.23) to obtain
the non-dimensional end-to-end length in the Gibbs ensemble

γ(η) = L(η) +
η

κ

[
1 +

1− L(η) coth(η)

1 + (η/κ) coth(η)

]
. (3.27)

Now we assume that the thermodynamic limit Nb →∞ is satisfied and use Eq. (3.22) to calculate
the Helmholtz free energy for the EFJC to be

ψ∗(γ) = NbbT

{
ηL(η) + ln

[
η

B0 sinh(η)

]
− ln

[
1 +

η

κ
coth(η)

]
+
η2

κ

[
1

2
+

1− L(η) coth(η)

1 + (η/κ) coth(η)

]}
,

(3.28)
where we solve for η = η(γ) using Eq. (3.27) in order to get ψ∗ = ψ∗(γ). The equilibrium distribution
in the thermodynamic limit is then calculated using Eq. (3.13),

P eq(γ) =
1

`3
bC

(
sinh(η) [1 + (η/κ) coth(η)]

η exp [ηL(η)]
exp

{
η2

κ

[
1

2
+

1− L(η) coth(η)

1 + (η/κ) coth(η)

]})Nb
, (3.29)

where C = C(Nb, κ) is such that the distribution is normalized. For κ → ∞ in Eqs. (3.27) and
(3.29), we recover the FJC mechanical response γ = L(η) and probability distribution in the
thermodynamic limit [1].
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Figure 3.3: Non-dimensional equilibrium radial distribution function versus end-to-end stretch for Nb = 3, 5, 10,
and 25, for (a) κ = 50 and (b) κ = 5. The distribution is plotted using the Helmholtz and Gibbs-Legendre methods
as well as using the Gaussian distribution valid for Nb →∞.

An alternative approximation method is to assume a Gaussian distribution for the equilibrium
distribution. This assumption is valid in the limit Nb → ∞ due to the central limit theorem.
In order to determine this Gaussian distribution for the EFJC model, we first approximate the
mechanical response in Eq. (3.27) for small forces (η � 1) by the linear relation

γ(η) =
η

cκ
, cκ =

κ(κ+ 1)

κ2 + 6κ+ 3
, (3.30)

and subsequently the free energy in Eq. (3.28) by a quadratic relation for η � 1. Combining these
results yields the small stretch (γ � 1) free energy

ψ∗(γ) =
3

2
cκNbbTγ

2. (3.31)

We now make use of this small stretch approximation to construct the equilibrium distribution for
Nb →∞ using Eq. (3.13), which is then

P eq(γ) =

(
3cκ

2πNb`2
b

)3/2

exp

(
−3

2
cκNbγ

2

)
. (3.32)

We remark that this distribution is a valid approximation for any stretch as long as Nb → ∞, so
it is common to utilize this equilibrium distribution with the Gibbs-Legendre method free energy
function in order to approximate the full Helmholtz method.

Since the Gibbs-Legendre method is often used to approximate the true Helmholtz free energy,
we plot the EFJC non-dimensional free energy (βψ∗/Nb) as a function of end-to-end chain stretch (γ)
for κ = 50 and varying Nb in Fig. 5.1(a), obtained using both the Helmholtz and the Gibbs-Legendre
methods, as well as the ideal chain free energy. See that for small values of Nb the difference in
free energy between the Helmholtz and Gibbs-Legendre methods is quite considerable, such as for
Nb = 3 where the relative difference is nearly constant at 60% for γ ∈ (0.5, 1). As Nb increases,
the difference between the two methods shrinks, becoming quite small when Nb = 25. We can also
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observe that the ideal chain free energy, which matches the Gibbs-Legendre method free energy at
small stretch, does not match that of the Helmholtz method until Nb becomes large. We repeat
this analysis for the smaller EFJC link stiffness (κ = 5) in Fig. 5.1(b), where we observe the same
trends but overall smaller differences among the methods. This can be understood by reconsidering
the Gibbs ensemble partition function in Eq. (3.25) and the ensemble transformation relation in
Eq. (3.26). First consider the case of Nb → ∞, where we will receive q∗(γ) → z∗(η)e−Nbηγ from
Eq. (3.26), and where the Gibbs-Legendre method results will exactly match that of the Helmholtz
method. This is because z∗(iη) will decay rapidly as a function of η when Nb becomes large and
effectively contain a Dirac delta function. Now for κ→ 0, we see that z∗(iη) will also decay rapidly
as a function of η, which will also act as a Dirac delta function via one definition,

δ(η) = lim
κ→0+

1√
2πκ

e−η
2/2κ, (3.33)

which appears in z∗(iη) after recalling that B0 ∝ 1/
√
κ in Eq. (3.25). This is why we observe

smaller differences between the Gibbs-Legendre and Helmholtz methods as κ decreases. It can
also be understood intuitively as a decreasing correlation between the links: the link degrees of
freedom in the Gibbs ensemble are completely independent, while that in the Helmholtz ensemble
are because of the end-to-end length constraint. As κ decreases the link degrees of freedom in the
Helmholtz ensemble become increasingly independent of each other, approaching the κ = 0 limit
where they are completely independent.

We plot the EFJC non-dimensional radial distribution function (Nb`bg
eq) as a function of end-to-

end stretch for κ = 50 and varying Nb in Fig. 3.3(a). The radial distribution function is plotted using
both the Helmholtz and the Gibbs-Legendre methods, as well as the Nb → ∞ limiting Gaussian
distribution. The Gibbs-Legendre distribution tends to be quite different from the Helmholtz distri-
bution for small values of Nb, while the Gaussian distribution tends to be a bit closer. By Nb = 25,
the Gaussian and Helmholtz distributions become nearly indistinguishable, and the Gibbs-Legendre
distribution retains only a small difference from the other two. We repeat this analysis for a smaller
EFJC link stiffness (κ = 5) in Fig. 3.3(b), where we observe the same trends but overall smaller
differences among the methods. This difference is again explained by the more rapidly decaying
z∗(iη) in Eq. (3.26) as κ decreases, as previously discussed. Though the Gibbs-Legendre method
free energy is immensely closer to the Helmholtz method free energy than the ideal chain free en-
ergy, we see here that the Gaussian distribution – obtained from the ideal chain free energy using
the distribution-behavior correspondence in Eq. (3.13) – tends to be much closer to the Helmholtz
method distribution than the Gibbs-Legendre method distribution. Looking back to Fig. 5.1, this is
likely because the Gibbs-Legendre method overestimates the single chain free energy increase with
stretch for smaller Nb, resulting in an underestimate of the probability of chains at larger stretch
observed in Fig. 3.3 due to the distribution-behavior correspondence relations.

Distribution evolution

We introduce P (ξ, t) as the probability density distribution of chains with end-to-end vector ξ
at time t, which we presume to initially be in the equilibrium distribution, P (ξ, 0) = P eq(ξ).
Liouville’s equation [49] describes the evolution of a probability density P in the single chain phase
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space (atomic coordinates and momenta) as

∂P

∂t
= −

M∑
j=1

(
∂P

∂qj
· q̇j +

∂P

∂pj
· ṗj
)
. (3.34)

When we apply Liouville’s equation to P (ξ, t), the only nonzero derivative we retrieve is that
relating to the chain end-to-end vector ξ = qM −q1, and thus the evolution law for the distribution
of end-to-end vectors is

∂P

∂t
= −∂P

∂ξ
· ξ̇, (3.35)

where ξ̇ = ξ̇(ξ, t) is left to be prescribed.

3.2.2 Macroscopic constitutive theory

In order to extend our theory into the macroscale, we prescribe an affine deformation to an in-
compressible network and analytically solve for the distribution evolution. Equipped with this
connection between the statistical and continuum mechanics of the polymer network, we use the
Coleman-Noll procedure [82] to develop the macroscopic constitutive theory. We choose the de-
formation gradient F and the temperature T as the independent thermodynamic state variables.
We presume these thermodynamic state variables to be complete, allowing us to consider time
derivatives of constitutive functions to be implicit, i.e. we may expand them in terms of the time
derivatives of the state variables. After some derivation – including the full treatment of a bound-
ary integral term that, until now, has been either omitted or otherwise assumed to be zero – we
ultimately retrieve a closed-form relation for the Cauchy stress in terms of the applied deformation,
the chain free energy function, and the equilibrium distribution of end-to-end vectors.

Macroscopic connection

We assume that the evolution of end-to-end vectors is affine with the deformation, ξ̇ = L · ξ, where
L = Ḟ · F−1 is the velocity gradient. Eq. (3.35) then becomes

∂P

∂t
= −

(
∂P

∂ξ

)
· L · ξ. (3.36)

This first order linear partial differential equation can be solved analytically using the method of
characteristics (See Appendix B.1). Under the initial conditions F(0) = 1 and P (ξ, 0) = P eq(ξ),
the solution is

P (ξ, t) = P eq
[
F−1(t) · ξ

]
, (3.37)

which simply states that the probability density of a chain having end-to-end vector ξ at time t is
equal to the probability density of that end-to-end vector mapped backward to the corresponding
end-to-end vector in the equilibrium distribution.
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Second law analysis

Now that we are equipped with the probability distribution of polymer chains within the network
as a function of the deformation, we write the current Helmholtz free energy density of the network
(a) by integrating the probability-weighted free energy function over all end-to-end vectors,

a(t) = n

∫∫∫
P (ξ, t)ψ∗(ξ) d3ξ − p(J − 1), (3.38)

where n = N/V is the number density of chains and p is the pressure enforcing the incompressibility
constraint that J = det(F) = 1. Note that we have only included contributions related to the chain
configuration integral and left out those related to the chain momentum integral. This is because
the latter terms will only introduce spherical terms to the stress (ideal gas law) and therefore can
be lumped into the pressure without loss of generality. Thermodynamically admissible processes
satisfy the Clausius-Duhem inequality [134],

ȧ+ sṪ − σ : L ≤ 0, (3.39)

where s is the entropy density and σ is the Cauchy stress tensor. This reduced form of the Clausius-
Duhem inequality involves several classical assumptions that are standard in the Coleman-Noll
procedure, such as the neglect of non-mechanical work, the constitutive relations for the entropy
flux and entropy source, and in this case Fourier’s law for the heat flux [135]. We expand the implicit
time derivative of the Helmholtz free energy density using our complete set of state variables,

ȧ =

(
∂a

∂t

)
T

+

(
∂a

∂t

)
F

(3.40)

=

(
∂a

∂F

)
T

: Ḟ +

(
∂a

∂T

)
F

Ṫ , (3.41)

and substitute this result back into Eq. (3.39) for[(
∂a

∂T

)
F

+ s

]
Ṫ +

[(
∂a

∂F

)
T

· FT − σ
]

: L ≤ 0. (3.42)

We now consider the set of processes where the deformation is held fixed, L = 0, and the temperature
is varied arbitrarily. Since Ṫ can be any real number, positive or negative, and this inequality must
hold, we see that the term in the first set of brackets must always be zero and we receive the
expected constitutive relation for the entropy density

s = −
(
∂a

∂T

)
F

, (3.43)

and after going back to our original derivative notation, we are left with the inequality(
∂a

∂t

)
T

− σ : L ≤ 0. (3.44)

Several steps are then taken in order to proceed from Eq. (3.44) and retrieve the stress. We first
neglect dissipative stresses, thus taking the equality in Eq. (3.44) and receiving a hyperelastic
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stress. Next, we take Eq. (3.38) and assume spherical symmetry in ψ∗, which causes the stress to
be non-polar. We then require that ψ∗ grows sufficiently fast as ξ →∞, in order to show that the
boundary integral term resulting from integration by parts is zero. The full derivation is presented
in Appendix B.2 and yields the stress to be

σ(t) = n

∫∫∫
P eq

[
F−1(t) · ξ

](∂ψ∗
∂ξ

)(
ξξ

ξ

)
d3ξ − [peq + ∆p(t)] 1, (3.45)

where 1 is the identity tensor, the differential pressure ∆p(t) enforces incompressibility, and the
equilibrium pressure peq (from σ(0) = 0) is

peq =
n

3

∫
geq(ξ)

(
∂ψ∗

∂ξ

)
ξ dξ. (3.46)

The derivative of the chain Helmholtz free energy can be replaced with the force using Eq. (3.23),
but one must be careful to ensure that the force is computed in the Helmholtz ensemble: the force
from the Gibbs ensemble may only be used in the thermodynamic limit (Nb →∞). If we utilize the
ideal chain free energy from Eq. (3.31), one can easily show that the Neo-Hookean model results,
as expected (see Appendix B.3).

3.2.3 Implementation

To close this section, we would like to point out some important aspects of the model implemen-
tation. It happens that Eq. (3.26) is difficult to evaluate with the EFJC partition function in
Eq. (3.25) for moderate to large Nb, which is due to the integrand oscillating rapidly and decaying
slowly. While certain integration schemes may perform reasonably well for small or large Nb, it is
most desirable to use an integration scheme that remains accurate for the full range of Nb being
considered. To evaluate this integral with high precision, we used the double exponential quadra-
ture scheme presented by Ooura and Mori [136] and their Fortran script intdeo.f that implements
it, as well as the arbitrary precision Fortran package MPFUN2015 provided by Bailey [137]. These
calculations were carried out using the Extreme Science and Engineering Discovery Environment
(XSEDE) Stampede2 cluster [124]. When calculating the integrals in Eq. (3.45) in order to retrieve
the stress, it is unwieldy to repeatedly call a function to exactly evaluate ψ∗(γ) for the EFJC as
γ →∞. See from Eqs. (3.27)–(3.28) that γ ∼ η/κ and βψ∗ ∼ Nbη

2/κ as η →∞, which combined
shows that βψ∗ ∼ Nbκγ

2 as γ →∞. The neglected terms in this asymptotic relation for ψ∗(γ) are
quite small, so the relation is accurate even for γ only moderately above unity. Therefore, in order
to greatly speed up the computation of the stress at negligible cost to accuracy, we fit a quadratic
function to ψ∗ for large γ and call this function instead when γ is above a certain value.

3.3 Macroscopic Results

Now that we have fully formulated the theory, we are able to explicitly examine the effects that
changes in the statistical description have on the macroscopic mechanics. Traditionally in polymer
network constitutive modeling, the Helmholtz ensemble has been approximated using the Legendre
transformation from the Gibbs ensemble, so we will start by examining the difference in macroscopic
mechanical response when using these Helmholtz and Gibbs-Legendre methods. Another common
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Figure 3.4: Non-dimensional uniaxial stress-stretch results for the EFJC network with (a) κ = 50 and (b) κ = 5, for
Nb = 5, 10, and 25. This mechanical response is plotted using the true method (Helmholtz) and two approximation
methods (Gibbs-Legendre, Gibbs-Legendre-Gaussian). Shading indicates equal Nb value. The Neo-Hookean response
is included as reference.

choice in these constitutive models is to assume that the equilibrium distribution is Gaussian, so we
will then examine how the true Helmholtz ensemble mechanical response differs from that assuming
the Gaussian distribution and the Gibbs-Legendre free energy function; we will refer to this as the
Gibbs-Legendre-Gaussian method. In both of these studies, we will see that a long enough polymer
chain causes all approaches to result in the same mechanical response. This convergence occurs
before the Nb → ∞ limit represented by choosing the ideal chain free energy function and the
Gaussian distribution, which is the Neo-Hookean model.

We apply the Helmholtz and Gibbs-Legendre methods to a polymer network modeled to consist
of EFJCs. z∗ for the EFJC is given by Eq. (3.25). The Helmholtz method takes z∗ and uses Eq. (3.26)
to compute q∗, then computes ψ∗ using Eq. (3.12) and P eq using Eq. (3.22). The Gibbs-Legendre
method assumes Nb →∞ in order to use ψ∗ in Eq. (3.28) and P eq in Eq. (3.29). In both methods, we
compute the stress under uniaxial tension in the 1-direction using Eq. (3.45), where the deformation
gradient is diagonal with components due to symmetry and incompressibility, F22 = F33 = 1/

√
F11.

In Fig. 3.4(a) we plot the non-dimensional uniaxial stress βσ11/n versus the applied stretch F11

using the non-dimensional EFJC stiffness κ = 50 and an increasing numbers of links Nb = 5, 10,
and 25. The Neo-Hookean stress-stretch response – retrieved through using Eq. (3.31) for ψ∗ and
Eq. (3.32) for P eq – is included for reference. For small numbers of links such as Nb = 5, the Gibbs-
Legendre method drastically underestimates the overall stiffness of the true stress response from the
Helmholtz method. This difference shrinks as Nb increases, becoming only a tiny (but increasing
with stretch) difference when Nb = 25, analogous to the differences between the free energy functions
and the equilibrium distributions shrinking in Figs. 5.1 and 3.3. We see that the two methods seem
to converge before the limit Nb →∞ is truly reached, where the Neo-Hookean mechanical response
would be retrieved. We have repeated the same analysis for the lower stiffness (κ = 5) in Fig. 3.4(b),
where we observe the same behavior as Nb increases, but in general less difference between the two
methods compared to the κ = 50 case for any Nb. These features are independent of loading mode,
as is evident by the above analyses implemented for equibiaxial tension and simple shear (Fig. 3.5).
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For equibiaxial tension we apply F11 = F22, where incompressibility requires F33 = 1/F 2
11, and for

simple shear we apply F12, where F11 = F22 = F33 = 1.
As previously mentioned, the equilibrium distribution P eq tends towards Gaussian as Nb →∞.

It is common for polymer network constitutive models to choose a non-ideal free energy function
ψ∗ but assume Nb is large enough to warrant the use of the Gaussian P eq, rather than the P eq

from the distribution-behavior correspondence relation given by Eq. (3.14). For the case of the
EFJC, the limit Nb → ∞ results in the Gaussian P eq given by Eq. (3.32). In attempting to
approximate the true Helmholtz method in the limit as Nb →∞, one would then assume a Gaussian
equilibrium distribution and either use the Helmholtz method or Gibbs-Legendre method for ψ∗.
We will neglect the case of the Helmholtz method ψ∗ combined with the Gaussian P eq, since by
distribution-behavior correspondence, one could simply find the true P eq after knowing ψ∗. In either
case, the macroscopic mechanical response will converge to that of the true Helmholtz method when
Nb becomes sufficiently large.

We apply the Gibbs-Legendre-Gaussian method to a polymer network modeled to consist of
EFJCs. The Gibbs-Legendre-Gaussian method uses ψ∗ from Eq. (3.28) and the Gaussian P eq from
Eq. (3.32). Taking the non-dimensional EFJC stiffness κ = 50, in Fig. 3.4(a) we plot the non-
dimensional stress βσ11/n versus the applied stretch F11 for increasing numbers of links Nb = 5, 10,
and 25. The Gibbs-Legendre-Gaussian method does well matching the tangent stiffness and keeping
the relative error small at larger stretches, but tends to do poorly at small to intermediate stretches
(F11 ≤ 2). We also see that this method seems to converge to the Helmholtz method stress-stretch
response before the limit Nb → ∞ is truly reached, where the Neo-Hookean mechanical response
would be retrieved. We have repeated the same analysis for the lower stiffness κ = 5 in Fig. 3.4(b),
where we observe the same trends but smaller relative errors, since as previously discussed and
shown in Fig. 3.3, the distributions from different methods become more alike for smaller κ.

When comparing the three methods in Figs. 3.4 and 3.5, we see that the Gibbs-Legendre method
tends to underestimate the true mechanical response given by the Helmholtz method, and the Gibbs-
Legendre-Gaussian method tends to overestimate it, especially at small stretches. To understand
this further, we can consider the initial moduli in each case by applying an infinitesimal deforma-
tion F = 1 + E, where E is the infinitesimal strain tensor. Straightforward analysis shows (see
Appendix B.4) that the stress from Eq. (3.45) then becomes

σ(t) = 2µE(t)−∆p(t)1, (3.47)

where method-specific shear modulus µ is given by

µ =
4π

15
nbT

∫∫∫ (
−∂P

eq

∂ξ

)(
∂βψ∗

∂ξ

)
ξ4 dξ. (3.48)

We find ∆p by enforcing incompressibility via tr(E) = 0, from which we find the initial moduli to
be 3µ, 6µ, and µ for uniaxial tension, equibiaxial tension, and simple shear, respectively. For the
Neo-Hookean model we receive the nondimensional modulus βµ/n = 1, as expected, whereas for the
other methods we cannot analytically compute the integral but in general receive βµ/n ≥ 1. We can,
however, compute the shear modulus in specific cases: for Nb = 5 and κ = 50, βµ/n = 1.1161 for
the Helmholtz method, βµ/n = 1.0957 for the Gibbs-Legendre method, and βµ/n = 1.5108 for the
Gibbs-Legendre-Gaussian method. See that while the Gibbs-Legendre method underestimates the
modulus, the Gibbs-Legendre-Gaussian method drastically overestimates it, which is why we observe
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Figure 3.5: Non-dimensional (a) equibiaxial and (b) simple shear stress-stretch results for the EFJC network
with κ = 50 for Nb = 5, 10, and 25. This mechanical response is plotted using the true method (Helmholtz) and
two approximation methods (Gibbs-Legendre, Gibbs-Legendre-Gaussian). Shading indicates equal Nb value. The
Neo-Hookean response is included as reference.

a poor performance of the Gibbs-Legendre-Gaussian method at small stretches in Figs. 3.4 and 3.5.
We see this difference even persists when Nb = 25 and κ = 50 – where βµ/n = 1.0155, 1.0153, and
1.0557 – and when Nb = 5 and κ = 5 – where βµ/n = 1.051, 1.0402, and 1.1691 – for the Helmholtz,
Gibbs-Legendre, and Gibbs-Legendre-Gaussian methods, respectively. These differences in modulus
occur because the Gibbs-Legendre-Gaussian method ignores distribution-behavior correspondence.
The Gibbs-Legendre method tends to overestimate the free energy (Fig. 5.1), which causes the
Gibbs-Legendre method distribution (Fig. 3.3) to underestimate the equilibrium amount of chains
at larger stretch. These two inaccuracies then naturally cancel to some extent when integrating for
the modulus, but when a non-corresponding distribution is instead used – such as in the Gibbs-
Legendre-Gaussian method – this cancellation does not occur. The Gaussian distribution (Fig. 3.3)
predicts an increased equilibrium number of chains at larger stretch, which combined with the Gibbs-
Legendre method overestimated free energy will produce a significantly overestimated modulus.
This also explains the poor convergence of the Gibbs-Legendre-Gaussian method as Nb increases,
which is especially evident from Fig. 3.5(b) where the Gibbs-Legendre method is nearly exact for
Nb = 25 while the Gibbs-Legendre-Gaussian method is not. Therefore, it seems that it is better
to obey distribution-behavior correspondence in using the Gibbs-Legendre method for small to
intermediate stretches and/or larger number of links. For a large stretch and small number of links,
it is seemingly better to instead use the method with the more accurate equilibrium distribution,
which here is the Gibbs-Legendre-Gaussian method. For a truly large number of links, we can
also be certain that either method will produce accurate approximations of the Helmholtz method
mechanical response.
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3.4 Conclusion

We have performed a fundamental statistical mechanical derivation in order to account for the
naturally occurring correspondences between the mechanical behavior of a single polymer chain
and the equilibrium distribution of a network of such chains. Correspondences between different
single-chain thermodynamic ensembles – both exact and in the thermodynamic limit – as well as
the Gaussian limit of the equilibrium distribution in either ensemble, were also accounted for and
discussed in detail using the extensible freely jointed chain model as an example. This elaborate
framework was then kept in-tact as we considered the macroscopic constitutive theory of the poly-
mer network and derived the Cauchy stress in terms of the affine deformation of a general network
of polymer chains. We used this constitutive relation for the stress to illustrate that important
distinctions in the statistical description persist to play an important role in the observed macro-
scopic mechanical response, at least until the number of links in the polymer chains becomes large.
Obeying the distribution-behavior correspondence relations allowed a more accurate approximation
of the macroscopic stress at small to intermediate deformations and/or longer chain lengths, even
though this corresponding equilibrium distribution was a worse match to the true distribution than
the Gaussian approximation. However when chains are short and the deformation is large, we saw
that it was better to utilize the Gaussian distribution, which can be attributed to the extensive
evolution the initial distribution undergoes during large deformations. This meticulous treatment is
vital for future constitutive model construction and is readily applicable to more complex polymer
systems. This macroscopic framework is readily compatible with any chain models that allow the
equilibrium probability distribution to be normalized and are infinitely extensible. Critically, this
includes common biopolymer models such as the wormlike chain model as long as the extensible
forms are used. This framework does not accommodate potentials that simulate bond breaking
such as the Morse potential, but bond breaking could be captured by instead including a reaction
pathway to broken chains.
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Chapter 4

Low-temperature statistical
thermodynamics by an asymptotic
method

Chapter 4 is adapted from an ongoing effort to develop a low-temperature analog of the high-
temperature perturbation theory developed by Robert W. Zwanzig over 65 years ago [138]. Just as
“high-temperature” is synonymous with weak potential energies of interaction, “low-temperature”
is synonymous with strong potential energies of interaction. These strong interactions have been
traditionally approximated as athermal rigid constraints or using the rigid-rotor-harmonic-oscillator
approximation [49], but our theory now offers a systematic method to obtain better approximations.
The main theory, which retrieves an asymptotic expansion for the canonical partition function, is
complete (Sec. 4.2) and demonstrated for a simple case (Sec. 4.3.1). Ongoing work is concerned
with applications to molecular stretching (Sec. 4.3.2) and broader molecular simulation. This work
has been advised by and contributed to by both Roger F. Loring and Meredith N. Silberstein.

Interatomic interactions such as chemical bonds are often quite strong, becoming nearly rigid
at sufficiently low temperatures. In classical statistical thermodynamics, these potential energies
of interaction are traditionally approximated as athermal rigid constraints or using the rigid-rotor-
harmonic-oscillator approximation. Though several methods of obtaining rotation-vibration coupled
and anharmonic corrections to these traditional approximations have been demonstrated over the
years, a general method has yet to be developed. Here a classical asymptotic theory is developed,
where the thermodynamic properties of the full system are related to those of the system with
rigid constraints and to the strong potentials near their minima. This is a general result and serves
as the low-temperature analog of the high-temperature perturbation theory developed by Robert
W. Zwanzig in his seminal paper from 1954. Using the simple example of the three-dimensional
harmonic oscillator, the theory is shown to obtain the correct asymptotic expansion consisting of
the rigid-rotor-harmonic-oscillator approximation and the correction for rotation-vibration coupling.
Our theory is especially relevant to molecular stretching experiments, where considerable applied
force prevents stiff bonds from being accurately approximated as rigid or even harmonic. Our theory
is also applicable to molecular simulation in general, as it provides a systematic method to obtain
corrections for molecular vibration spectra. In the future, we will consider each of these applications
and provide more validations of our theory.

39
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4.1 Introduction

In classical statistical thermodynamics (equilibrium statistical mechanics), solving systems of inter-
acting particles is a challenging and often insurmountable task without using simulation approaches,
such as molecular dynamics or Monte Carlo methods. As pointed out by McQuarrie [49], the con-
figuration integral that appears when considering interacting particles was essentially responsible
for most research in statistical thermodynamics. In 1954, Robert Zwanzig alleviated some of this
burden by developing high-temperature perturbation theory [138]. For example, the theory allows a
system of weakly interacting particles to be systematically approximated by the reference system of
noninteracting particles and a power series. Zwanzig’s theory led to several successful and popular
applied perturbation theories, such as those for dense fluids [139, 140]. Decades later, researchers
are essentially still equipped with only simulation and perturbation theory as tools when solving
the vast majority of statistical mechanical systems [141].

In contrast to systems with weakly interacting particles, there is not yet a systematic approx-
imation method for systems with strongly interacting particles. This method would be the low-
temperature analog of high-temperature perturbation theory, where the reference system would
consist of replacing the strong potentials with athermal rigid constraints. Traditionally, these sys-
tems are approximately solved using the rigid rotor and harmonic oscillator approximations [49].
Although anharmonic corrections can sometimes be determined for a system [49], a systematic ap-
proach for general potentials and systems is still unknown. Further, these sorts of approximations
are not generally valid, such as in the case of molecular stretching, where sufficiently large applied
force will cause the strong potentials to leave their harmonic regimes. This deviation is especially
important when considering the mechanical response of a single polymer chain in the overstretching
regime, which has been of recent interest in many models [67, 75, 78, 130, 142–144]. Currently,
a heuristic method [62] is typically used and is somewhat successful, but a new approach that is
explicitly compatible with the principles of statistical thermodynamics is more desirable.

Here, we present an asymptotically-correct method that approximates the statistical thermo-
dynamics of systems containing strong potential energies of interaction. Our theory acts as the
low-temperature analog of the high-temperature perturbation theory developed by Zwanzig, where
the reference system here is a system with athermal rigid constraints. In Sec. 4.2 we develop the
theory and obtain the asymptotic relation for the full system partition function and subsequently
the Helmholtz free energy. In Sec. 4.3 we consider applications; in Sec. 4.3.1, we obtain the correct
asymptotic expansion of the exact partition function for the three-dimensional harmonic oscillator.
In Sec. 4.3.2, we discuss how the theory is applied in the case of molecular stretching, and we
subsequently conclude.

4.2 Theoretical development

Consider the canonical partition function

q =

∫
dΓ0

∫
dX e−βH0(Γ0;X) e−βU1(X), (4.1)

where H0 is the Hamiltonian of the reference system, Γ0 represents the degrees of freedom of the
reference system, U1 is the potential energy of interaction that is strong compared to thermal
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energy bT = 1/β, and X represents the configurational degrees of freedom associated with the
strong potential U1. Let X̂ represent the configuration where U1 is minimized. As bT becomes
small (β becomes large) compared to the scale of U1, the configurational degrees of freedom begin
to become athermal rigid constraints with X = X̂ and the full system behaves like the reference
system. We will obtain an asymptotic approximation valid in this limit based on knowledge of the
reference system and the strong potential.

4.2.1 Canonical partition function

Let U1 be given by the sum over M independent degrees of freedom X = {x1, . . . , xM},

U1(X) =
M∑
i=1

ui(xi), (4.2)

and let the corresponding element of integration then be written as

dX = J(x)
M∏
j=1

dxj, (4.3)

where J(x) is the Jacobian that may be involved if the xj are not Cartesian coordinates. The
partition function in Eq. (4.1) can now be written as the nested set of integrals

q =

∫
dΓ0

∫
dx1 e

−βu1(x1) · · ·
∫
dxM e−βuM (xM )J(x)e−βH0(Γ0;x). (4.4)

The more general case where U1(X) cannot be written in the form of Eq. (4.2) can also be treated
by the following approach, but the mathematics are more complicated [145]. Conveniently, the form
of U1(X) in Eq. (4.2) is valid for many physical systems of interest. Let uj(xj) = εjφj(xj), where εj
are the energy scales and φj(xj) are the non-dimensional potential energy functions. Then µj = βεj
are the non-dimensional energy scales and we rewrite Eq. (4.4) as

q =

∫
dΓ0

∫
dx1 e

−µ1φ1(x1) · · ·
∫
dxM e−µMφM (xM )J(x)e−βH0(Γ0;x). (4.5)

We now consider the limit in which the temperature is low compared to each energy scale, µj →∞.
We will denote derivatives of φj(xj) using apostrophes, i.e. φ′j(xj) = dφ′i(xj)/dxj. Let each φj(xj)
achieve a unique, hyperbolic minimum at xj = x̂j, such that the Taylor series there is given by

φj(xj) = φj(x̂j) +
1

2
φ′′j (x̂j) (xj − x̂j)2 +

1

6
φ′′′j (x̂j) (xj − x̂j)3 + · · · , (4.6)

and where the hyperbolic minimum requirement stipulates that φ′′j (x̂j) > 0. Let f(Γ0; x) ≡
J(x)e−βH0(Γ0;x), and then consider the first integral within the nested set of integrals in Eq. (4.5),

IM(Γ0;x1, . . . , xM−1) ≡
∫
dxM e−µMφM (xM )f(Γ0; x). (4.7)
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Laplace’s method [146] for obtaining the asymptotic behavior of integrals shows that

IM(Γ0;x1, . . . , xM−1) ∼
{√

2π

µMφ′′M(xM)
e−µMφM (xM )

[
f(Γ0; x) +

gM(Γ0; x)

µMφ′′M(xM)

]}∣∣∣∣∣
xM=x̂M

(4.8)

as µM →∞, where each function gj (Γ0; x) is defined as

gj(Γ0; x) ≡ 1

2

∂2f(Γ0; x)

∂x2
j

− 1

2

φ′′′j (xj)

φ′′j (xj)

∂f(Γ0; x)

∂xj
− 1

8

φ′′′′j (xj)

φ′′j (xj)
f(Γ0; x) +

5

24

[
φ′′′j (xj)

φ′′j (xj)

]2

f(Γ0; x). (4.9)

We now repeat this process with the remaining M−1 integrals in Eq. (4.5) and disregard any terms
that are O(µ−1

i µ−1
j ), which allows us to obtain the asymptotic relation

q ∼ α̂(x̂)

∫
dΓ0

{
f(Γ0; x̂) +

M∑
j=1

gj(Γ0; x̂)

µjφ′′j (x̂j)

}
as µj →∞, j = 1, . . . ,M, (4.10)

where the prefactor α̂ is defined as

α̂(x̂) ≡
M∏
j=1

√
2π

µjφ′′j (x̂j)
e−µjφj(x̂j). (4.11)

We will now complete the final integration, that over dΓ0 in Eq. (4.10). The partition function of
the reference system with rigid constraint coordinates x is given by

q0(x̂) ≡
∫
dΓ0 J(x̂)e−βH0(Γ0;x̂) (4.12)

=

∫
dΓ0 f(Γ0; x̂), (4.13)

and each gj(Γ0; x) in Eq. (4.9) is linear in f(Γ0; x) and its derivatives, allowing

∫
dΓ0 gj(Γ0; x̂) =

1

2

∂2q0(x̂)

∂x2
j

− 1

2

φ′′′j (x̂j)

φ′′j (x̂j)

∂q0(x̂)

∂xj
− 1

8

φ′′′′j (x̂j)

φ′′j (x̂j)
q0(x̂) +

5

24

[
φ′′′j (x̂j)

φ′′j (x̂j)

]2

q0(x̂) (4.14)

=ωj(x̂)q0(x̂), (4.15)

where we have defined

ωj(x̂) ≡ 1

2q0(x̂)

[
∂2q0(x̂)

∂x2
j

− φ′′′j (x̂j)

φ′′j (x̂j)

∂q0(x̂)

∂xj

]
− 1

8

φ′′′′j (x̂j)

φ′′j (x̂j)
+

5

24

[
φ′′′j (x̂j)

φ′′j (x̂j)

]2

, (4.16)

so we may now rewrite Eq. (4.10) as

q ∼ α̂(x̂)q0(x̂)

[
1 +

M∑
j=1

ωj(x̂)

µjφ′′j (x̂j)

]
. (4.17)



4.2. Theoretical development 43

Returning to the original units, the results are summarized as follows: the full system partition
function q(x̂) is asymptotically approximated by

q ∼ α̂(x̂)q0(x̂)

[
1 +

M∑
j=1

ωj(x̂)

βu′′j (x̂j)

]
as βεj →∞, j = 1, . . . ,M, (4.18)

where the x̂j are the locations of the minima of the potential energies uj(x̂j). The full system
partition function q is a product of the prefactor α̂ given by

α̂(x̂) =
M∏
j=1

√
2π

βu′′j (x̂j)
e−βuj(x̂j), (4.19)

the reference system partition function q0(x̂) given by Eq. (4.12), and the corrective term in square
brackets, where each ωj(x̂) is given by

ωj(x̂) =
1

2q0(x̂)

[
∂2q0(x̂)

∂x2
j

− u′′′j (x̂j)

u′′j (x̂j)

∂q0(x̂)

∂xj

]
− 1

8

u′′′′j (x̂j)

u′′j (x̂j)
+

5

24

[
u′′′j (x̂j)

u′′j (x̂j)

]2

. (4.20)

We now have an asymptotic expansion for the full system partition function in terms of that of the
reference system, and the strong potentials and their derivatives evaluated at their minima.

4.2.2 Helmholtz free energy

The Helmholtz free energy [49] is given by

A = −bT ln q, (4.21)

so the Helmholtz free energy of the reference system is then A0 = −bT ln q0. In taking the logarithm
of Eq. (4.18) we again utilize βεj → ∞ in order to use the Mercator series to asymptotically
approximate the logarithm of the term in the brackets:

ln

[
1 +

M∑
j=1

ωj(x̂)

βu′′j (x̂j)

]
∼

M∑
j=1

ωj(x̂)

βu′′j (x̂j)
. (4.22)

We may rewrite Eq. (4.20) in terms of A0 as

ωj(x̂) =
1

2

[(
∂βA0(x̂)

∂xj

)2

− ∂2βA0(x̂)

∂x2
j

+
u′′′j (x̂j)

u′′j (x̂j)

∂βA0(x̂)

∂xj

]
− 1

8

u′′′′j (x̂j)

u′′j (x̂j)
+

5

24

[
u′′′j (x̂j)

u′′j (x̂j)

]2

, (4.23)

and we recall
∑

j uj(x̂j) = U1(x̂). The resulting asymptotic relation for the Helmholtz free energy
of the full system A is then

A ∼ A0(x̂) + U1(x̂) + bT
M∑
j=1

[
1

2
ln

(
βu′′j (x̂j)

2π

)
− ωj(x̂)

βu′′j (x̂j)

]
. (4.24)
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Eq. (4.24) shows that the Helmholtz free energy of the full system can be asymptotically approx-
imated by the sum of the Helmholtz free energy of the reference system, the minimized potential
energy from the stiff degrees of freedom, a series of terms due to the logarithm of the prefactor, and
a series of small corrections.

4.3 Applications

Here we consider applications of the asymptotic theory developed in Sec. 4.2. We first consider the
three-dimensional harmonic oscillator and show that the theory is successful in obtaining asymptotic
approximations of the exact result, which can be obtained analytically in this case. We then discuss
how the theory is adjusted for the force-applied ensemble encountered when stretching molecules.

4.3.1 Three-dimensional harmonic oscillator

Consider two masses (m1 and m2) connected by a stiff harmonic spring with stiffness k and rest
length `b. The classical Hamiltonian of this three-dimensional harmonic oscillator is given by

H(p, q) =
p2

1

2m1

+
p2

2

2m2︸ ︷︷ ︸
H0

+
kb
2

(
‖q1 − q2‖2 − `b

)2︸ ︷︷ ︸
U1

. (4.25)

As kb becomes large, the spring begins to act as an athermal rigid constraint. This means that
the kinetic energy is the reference system Hamiltonian H0, the spring potential energy is the stiff
potential U1, the distance between the masses ‖q1 − q2‖2 is the stiff degree of freedom x, and the
reference system has x̂ = `b. The nondimensional Hamiltonian,

βH(p, q) =
βp2

1

2m1

+
βp2

2

2m2

+
κ

2

(‖q1 − q2‖2

`b
− 1

)2

, (4.26)

makes it clear that we are considering when the nondimensional stiffness κ ≡ βkb`
2
b is large, i.e.

when thermal energy is low compared to the energy scale of the spring k`2
b . The partition function

in Eq. (4.1) can be computed exactly in this case. The momentum partition function qmom is that
of two free masses, and a factor of the volume V arises from rigid body translation [49]. The
relative configuration integral qcon involves the configurational degrees of freedom via rotation and
vibration. The result is

q = 4π`3
b

{
e−κ/2

κ
+

√
π

2κ

(
1 +

1

κ

)[
2− erfc

(√
κ

2

)]}
︸ ︷︷ ︸

qcon

(
2π
√
m1m2

β

)3

︸ ︷︷ ︸
qmom

V, (4.27)

where erfc(z) = 1− erf(z) is the complementary error function. The low-temperature theory is now
applied in order to retrieve an asymptotic approximation of this partition function. The reference
system has x = x̂ = `b held fixed, resulting in the partition function

q0(`b) = 4π`2
bqmomV. (4.28)
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Note that we have not constrained the momentum degrees of freedom in the fashion that would
be consistent with the configurational constraint, as was done when deriving the general theory in
Sec. 4.2. The prefactor α̂(`b) in Eq. (4.19), after using u(`b) = 0 and u′′ = k, is obtained:

α̂(`b) =

√
2π

βk
= `b

√
2π

κ
. (4.29)

The correction factor ω(`b) in Eq. (4.20) involves only a single term since the harmonic potential
has only two nonzero derivatives:

ω(`b) =
1

2q0(`b)

∂2q0(`b)

∂`2
b

=
1

`2
b

. (4.30)

The asymptotic approximation of the full system partition function, given by Eq. (4.18) and obtained
by combining Eqs. (4.28)–(4.30), is then

q ∼ 4π`3
b

√
2π

κ

(
1 +

1

κ

)
qmomV for κ� 1. (4.31)

In order to compare this more directly to the exact result in Eq. (4.27), the asymptotic relation
[147] for the complementary error function is necessary,

erfc (x) ∼ e−x
2

x
√
π

∞∑
n=0

(−1)n
(2n− 1)!!

(2x2)n
for x� 1. (4.32)

Substitution of Eq. (4.32) into Eq. (4.27) yields the asymptotic relation

q ∼ 4π`3
b

√
2π

κ

[
1 +

1

κ
+ h(κ)

]
qmomV for κ� 1, (4.33)

where the function h(κ) is given by

h(κ) ≡ e−κ/2√
2πκ

[
1−

(
1 +

1

κ

) ∞∑
n=0

(−1)n
(2n− 1)!!

κn

]
. (4.34)

Since h(κ) < O(κ−1), the asymptotic theory has correctly obtained in Eq. (4.31) an asymptotic
expansion of the exact result in Eq. (4.27). Since h(κ) is transcendentally small [146], which means
that h(κ) shrinks faster than any power of κ−1, the asymptotic theory will not obtain any additional
corrections in this case. The leading order approximation in Eq. (4.31),

q ∼ 4π`3
b

√
2π

κ
qmomV for κ� 1, (4.35)

is the partition function when applying the rigid-rotor-harmonic-oscillator approximation [49]. The
correction to this approximation provided by Eq. (4.31) is then correcting for rotation-vibration
coupling. If the spring were anharmonic, Eq. (4.31) would have additional terms correcting for
anharmonicity as well. Finally, note that taking κ → ∞ explicitly within either result, Eq. (4.27)
or Eq. (4.31), obtains zero rather than the reference system result in Eq. (4.28). This illustrates
the necessity of obtaining an asymptotic theory from the original partition function using Laplace’s
method, rather than building one up from the reference system partition function.
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4.3.2 Molecular stretching

For isotensional molecular stretching experiments, we follow the same procedure in Sec. 4.2 but
utilize the total potential energy Π ≡ U − f · (q2 − q1) in place of U , where f is the external force
applied equally and oppositely at the atoms labeled 1 and 2. The relevant partition function is now
the Gibbs (isotensional) ensemble partition function [125]

z =

∫
dΓ0

∫
dX e−βH0(Γ0;X) e−βU1(X) eβf ·(q2−q1). (4.36)

When the applied force is small compared to the stiff potentials, x̂ = x̂(f) can be neglected and
approximations becomes simpler, i.e. when the minimum of Π and U approximately coincide.
Generally, though, the applied force causes the x̂ to shift from their values minimizing U to those
minimizing Π . The general theory in Sec. 4.2 can still be applied in this case after lumping eβf ·(q2−q1)

into f(Γ0; x), but x̂ = x̂(f) causes many complicated terms to be encountered when calculating the
mechanical response, ∂(bT ln z)/∂f . The isometric (Helmholtz) ensemble is much more complicated,
as it involves computing derivatives of the Dirac delta function within the integrand, and the
reference system is almost always analytically intractable [125].

4.4 Conclusions

We have developed an asymptotically-correct theory approximating the statistical thermodynam-
ics of systems containing potential energies of interaction that are strong compared to available
thermal energy. This theory is the low-temperature analog of the high-temperature perturbation
theory developed by Zwanzig in 1954. We have demonstrated that the theory obtains the correct
asymptotic expansion of exact results using a simple example. In the future, we will apply this
theory to molecular stretching experiments, especially those concerning single polymer chains, and
to general molecular simulation.



Chapter 5

Chain breaking in the statistical
mechanical constitutive theory of
polymer networks

Chapter 5 and Appendix C are adapted from: M. R. Buche and M. N. Silberstein. Chain break-
ing in the statistical mechanical constitutive theory of polymer networks. arXiv:2104.08866

[cond-mat.soft]. Accepted at J. Mech. Phys. Solids (2021). The Python implementation of the
model [149] is available on GitHub and PyPI (pip install chain breaking polymer networks).

Elastomers are used in a wide range of applications because of their large strain to failure,
low density, and tailorable stiffness and toughness. The mechanical behavior of elastomers derives
mainly from the entropic elasticity of the underlying network of polymer chains. Elastomers under
large deformation experience bonds breaking within the backbone chains that constitute the polymer
network. This breaking of chains damages the network, can lead to material failure, and can
be utilized as an energy dissipation mechanism. In the case of reversible bonds, broken chains
may reform and heal the damage in the network. If the reversible bonds are dynamic, chains
constantly break and reform and create a transient network. A fundamental constitutive theory is
developed to model the mechanics of these polymer networks. A statistical mechanical derivation is
conducted to yield a framework that takes in an arbitrary single-chain model (a Hamiltonian) and
outputs the following: the single-chain mechanical response, the breaking and reforming kinetics,
the equilibrium distribution of chains in the network, and the partial differential equations governing
the deformation-coupled network evolution. This statistical mechanical framework is then brought
into the continuum scale by using macroscopic thermodynamic constitutive theory to obtain a
constitutive relation for the Cauchy stress. The potential-supplemented freely jointed chain (uFJC)
model is introduced, and a parametric study of its mechanical response and breaking kinetics is
provided. This single-chain model is then implemented within the constitutive framework, which we
specialize and apply in two exemplary cases: the mechanical response and irreversible breakdown
of a multinetwork elastomer, and the mechanical response of a dual crosslink gel. After providing a
parametric study of the general constitutive model, we apply it to a hydrogel with reversible metal-
coordination crosslinks. In several cases, we find that the breakdown of the network causes secondary
physical mechanisms to become important and inhibit the accuracy of our model. We then discuss
these mechanisms and indicate how our existing framework can be adjusted to incorporate them in
the future.
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https://arxiv.org/abs/2104.08866
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5.1 Introduction

Bulk elastomer materials often consist of many single polymer chains crosslinked together to form
a network of chains. Elastomers tend to be soft, elastic, and highly stretchable, due to the entropic
elasticity of the chains above the glass transition temperature [1]. From large tires and small seals
to soft robotics, elastomers are utilized in a wide variety of applications due to their resilience.
However, as the elastomer network is deformed more extensively, bonds begin to stretch and then
chains begin to break. While chain breaking can result in material failure for simpler elastomers,
many advanced elastomers are cleverly designed to take advantage of chain breaking. Firstly,
elastomers may be strengthened, toughened, and made more stretchable through the incorporation
of one or more sacrificial networks that begin to break down irreversibly when stretched, dissipating
energy while secondary networks maintain the integrity of the material. The sacrificial network is
often embrittled as a swollen gel [2], but could also be pre-stretched using the secondary networks
[6] or even designed without need for pre-stretching [7]. The breaking in the sacrificial network
may involve some additional functionality, such as mechanoluminescence [11] and recently, chain-
lengthening [16]. Secondly, elastomers may utilize a range of reversible bonds in order to allow
chains to reform after they have been broken. This reversible breaking allows similar properties
as the irreversibly-breaking cases, such as high stretchability and toughness, while also allowing
new properties such as self-healing [18]. Alginate-based gels contain ionic crosslinking that breaks
reversibly as the polymer is deformed, increasing toughness while enabling both self-healing and
shape-memory [20]. Metal-ligand interactions, which are inherently tunable [21], when used as
crosslinks provide a precise method to control polymer mechanical properties via the simple addition
of neutral ligands [28]. Dynamic reversible bonds may also be utilized: polymers with associative
bond exchange reactions like vitrimers behave as an elastic solid at low temperatures while flowing
more similarly to a viscous fluid at high temperatures, all the while maintaining the integrity of
the network [29]. Some of these covalent adaptable networks use light as a stimulus in order to
trigger the dynamic bonds to permanently alter the material shape [35]. Utilizing a combination
of interactions is also useful, such as the combination of permanent covalent bonds and transient
physical bonds in dual-crosslink gels [45]. Overall, the mechanical properties of these materials tend
to be highly nonlinear, rate-dependent, and sensitive to changes in their chemistry. Therefore, a
truly physical constitutive model that accounts for the complexities of chains breaking in a network
is desirable to maximize both predictive power and fundamental understanding for the wide range
of available chemistries and combinations.

There are a variety of physically-based constitutive models for polymer networks that incorporate
chain breaking, frequently using the freely-jointed chain (FJC) single-chain statistical mechanical
model [50]. A portion of these models are targeted towards the mechanical response of permanently-
crosslinked elastomers, where chains or crosslinks are considered to break suddenly and irreversibly
[62, 67]. This approach has been successfully applied when modeling the irreversible damage or
fracture of polymer networks [75, 76, 78, 142, 143]. Additionally, irreversible breaking has been
incorporated into many models for multinetwork elastomers and gels [74, 150–153], sometimes
addressing a particular phenomenon such as necking instability [81, 154, 155]. Another portion of
these physically-based constitutive models tends to be specialized for transient networks enabled
by highly dynamic bonds. Transient network theory is typically attributed to Tanaka and Edwards
[59, 156], which is built upon foundational work from the 1940s to the 1990s [58, 157–159]. Recent
development has been driven by Vernerey et al. ([60, 160]), and has lead to successful application in
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fracture scenarios [161, 162]. Other constitutive models for polymers with dynamic bonds combine
physically-based insights with continuum-level constitutive laws, such those for the mechanics of
dual-crosslink gels and of networks with temperature-sensitive dynamic covalent bonds [163–172].

Although these existing physically-based constitutive models perform well for a range of mate-
rials, any one of them lacks widespread applicability. In this manuscript we present a statistical
mechanical derivation that can bridge these models, where these models are special cases of the
general model. This derivation will yield, from an arbitrary single-chain model Hamiltonian, (1) the
single-chain mechanical response, (2) the equilibrium distribution of chains in the network, and (3)
the mechanically-dependent kinetics of chain breaking and reforming. While the first two connec-
tions have previously been established [125], the force-dependent kinetics have not yet been directly
connected to the statistical mechanics of the single-chain model. With limited additional assump-
tions, this statistical mechanical foundation will then be used to formulate macroscopic constitutive
relations entirely informed by an arbitrary single-chain model. This meticulous procedure carrying
the underlying statistical mechanics through to the macroscale has many inherent benefits, such as
consistency between the equilibrium configuration obtained by statistical thermodynamics and that
obtained macroscopically, and the automatic satisfaction of the second law of thermodynamics.

This manuscript is organized as follows: In Sec. 5.2.1, beginning from the fundamentals of
nonequilibrium statistical mechanics, we obtain evolution equations for the probability of finding
an intact chain at a certain end-to-end vector within the network as a function of time. This
derivation results in the single-chain mechanical behavior, equilibrium distributions of chains in the
network, and chemical kinetics function of chain breaking/reforming all in terms of the single-chain
partition functions. In Sec. 5.2.2, our statistical theory is brought into the macroscale through the
formulation of the Helmholtz free energy of the incompressible network. After prescribing an affine
deformation, a second-law analysis then results in the constitutive relation for the Cauchy stress
entirely in terms of the intact chain distribution and single-chain mechanical response, where the
residual inequality is shown to be arbitrarily satisfied. With the general theory complete, in Sec. 5.3
we introduce and implement the uFJC single-chain model: the freely jointed chain (FJC) model
supplemented to have stiff, but flexible links with some potential energy u. We utilize the Morse
potential for u and study various single-chain functions over a range of parameters. Additionally,
we present an original exact solution for the evolving intact chain probability distribution. In
Sec. 5.4, we consider several special cases from the limiting behavior of our model and apply them
to exemplary polymers from the literature. We then study the general behavior of the model,
drawing conclusions in comparison to these simpler special cases and examining the results over
a range of single-chain parameters. Afterward we apply the general model to another polymers
from the literature. Finally, we discuss the successes and shortcomings of our model and propose
improvements for future work. We have implemented our model in a Python package and made it
available on GitHub and PyPI to facilitate both adoption and adaption by interested readers [149].
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5.2 General theory

5.2.1 Statistical mechanics

We consider a classical, canonical statistical mechanical ensemble of noninteracting polymer chains
that may break/reform via multiple reaction pathways. Beginning from the general nonequilibrium
formalism of Zwanzig [173], we derive a general evolution law for the probability distribution of in-
tact chains at a certain end-to-end vector. We then apply the assumptions of transition state theory
to obtain a simpler evolution law that does not require knowledge of the phase space distribution
function. After making some assumptions about the behavior of broken chains, we obtain conser-
vation requirements for all chains in the network, as well as an evolution law for the probability of
each broken chain species.

Phase space principles

In classical statistical mechanics [49], the phase space distribution function f(Γ; t) provides the
probability density at time t that the system is in the state, denoted by Γ, with the atomic positions
q and momenta p. We may calculate the macroscopically observable value Φ(t) of some phase space
function φ(Γ), which is the ensemble average of φ(Γ), or 〈φ〉, as

Φ(t) = 〈φ〉 ≡
∫
· · ·
∫
f(Γ; t)φ(Γ) dΓ. (5.1)

In order to find f(Γ; t), we integrate the evolution equation for f(Γ; t), the Liouville equation

∂f

∂t
= (−L ) f =

(
∂H

∂q
· ∂
∂p
− ∂H

∂p
· ∂
∂q

)
f, (5.2)

with L being the Liouville operator. Since f(Γ; t) does not evolve at equilibrium, L f eq = 0
for the equilibrium phase space distribution function f eq(Γ). This equilibrium distribution is the
Boltzmann distribution

f eq(Γ) =
e−βH(Γ)

q
, (5.3)

where H(Γ) is the Hamiltonian of the system, β = 1/bT is the inverse temperature, b is Boltzmann’s
constant, T is the temperature, and

q =

∫
e−βH(Γ) dΓ (5.4)

is the canonical partition function for the system. Note that we neglect the factors of Planck’s
constant h that would nondimensionalize the partition functions, but this has no effect on our
classically-obtained results. The equilibrium ensemble average of some phase space function φ(Γ)
is the time-independent average

Φeq = 〈φ〉eq ≡ 1

q

∫
· · ·
∫
e−βH(Γ)φ(Γ) dΓ. (5.5)
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Figure 5.1: Illustration of an intact chain (A) with various links of instantaneous length `i that may act as reaction

coordinates. In this illustration, the links may break irreversibly (see B1) or reversibly (see B2) when `i > `‡i .

While solving for f(Γ; t) would give us full knowledge of the system, it is impractical for our purposes
since Γ constitutes far too many state variables. Fortunately, the macroscopic observables of interest
in our case only require knowledge of a subset of the probability distribution of the phase space
variables. Specifically, we will only need the probability density distribution PA(ξ; t) of intact chains
with end-to-end vector ξ at time t to calculate the macroscopic stress. In order to track PA(ξ; t),
we will also need to consider the analogous distributions of broken chains PBj(ξ; t), where j denotes
that the chain has broken via the jth pathway; this is illustrated in Fig. 5.1. In the following section,
we will write PA(ξ; t) in terms of f(Γ; t), and subsequently utilize this relation and the evolution
equation for f(Γ; t) to obtain the evolution equation for PA(ξ; t).

Evolution of intact chains

The probability density distribution P (ξ; t) of chains with end-to-end vector ξ at time t is given by
the ensemble average

P (ξ; t) =
〈
δ3 [R(Γ)− ξ]

〉
, (5.6)

where δ is the Dirac delta function and R(Γ) is the end-to-end vector of the chain as a function of
phase space variables Γ. This ensemble average effectively results in an integration of f(Γ; t) over
the portion of the phase space where the end-to-end vector of the chain is ξ. A subset of the phase
space variables Γ are the reaction coordinates ` that determine whether a chain is intact or broken.
We consider M of these reaction coordinates, where `i is then the ith reaction coordinate. A chain
is intact (A) if all `i < `‡i , while a chain is broken (B) if any `i > `‡i . The reaction coordinates `i
then create regions of the phase space where chains are intact (A) or broken (Bi). The boundaries
separating these two regions are the transition states with `i = `‡i . Using Heaviside step functions
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Θ, we may then write the probability density distribution PA(ξ; t) that a polymer chain is both
intact and at end-to-end vector ξ at time t as

PA(ξ; t) =

〈
δ3 [R(Γ)− ξ]

M∏
i=1

Θ
(
`‡i − `i

)〉
. (5.7)

We differentiate Eq. (5.7) with respect to time t in order to produce the evolution equation for
PA(ξ; t). Using Eq. (5.2) and the properties of the Liouville operator L noted by Zwanzig [173], we
see that d

dt
〈φ〉 = 〈L φ〉 for some phase space function φ(Γ), so the evolution equation for PA(ξ; t) is

∂PA(ξ; t)

∂t
=

〈
L

{
δ3 [R(Γ)− ξ]

M∏
i=1

Θ
(
`‡i − `i

)}〉
. (5.8)

We will work from Eq. (5.8) to a readily usable form of the evolution equation for PA(ξ; t), beginning
with expansion using the product rule,

∂PA(ξ; t)

∂t
=

〈
L
{
δ3 [R(Γ)− ξ]

} M∏
i=1

Θ
(
`‡i − `i

)〉

+
M∑
j=1

〈
δ3 [R(Γ)− ξ] L

{
Θ
(
`‡j − `j

)} M∏
i=1
i 6=j

Θ
(
`‡i − `i

)〉
. (5.9)

We consider the first term in Eq. (5.9) where the Liouville operator L acts on the delta function.
In effect, this term accounts for the evolution of PA(ξ; t) due to ξ̇A(ξ; t), the average rate of change
of the end-to-end vector of an intact chain currently having end-to-end vector ξ,

ξ̇A(ξ; t) ≡
〈

Ṙ(Γ) δ3 [R(Γ)− ξ]
M∏
i=1

Θ
(
`‡i − `i

)〉
. (5.10)

As detailed in general by Zwanzig [174], the first term in Eq. (5.9) can then be written as

〈
L
{
δ3 [R(Γ)− ξ]

} M∏
i=1

Θ
(
`‡i − `i

)〉
= − ∂

∂ξ
·
[
ξ̇A(ξ; t)PA(ξ; t)

]
. (5.11)

We now consider the second set of terms in Eq. (5.9) where the Liouville operator L acts on each
of the step functions Θ(`‡j − `j). The derivative of the step function is the delta function, and L
acting on the coordinates `j produces the velocities pj/mj, such that

L
{

Θ
(
`‡j − `j

)}
= − pj

mj

δ
(
`‡j − `j

)
. (5.12)

The summands of Eq. (5.9) are therefore the expected values of the velocity −pj/mj along the

jth reaction coordinate `j for a chain at end-to-end vector ξ in the jth transition state `‡j. These
summands are understood as the evolution of PA(ξ; t) due to flow across each transition state
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boundary. If we use step functions to split these flows into the forward A → Bj and reverse Bj → A
reactions, with respective rates

R′j(ξ; t) =

〈
pj
mj

Θ(pj)δ
3 [R(Γ)− ξ] δ

(
`‡j − `j

) M∏
i=1
i 6=j

Θ
(
`‡i − `i

)〉
, (5.13)

R′′j (ξ; t) =

〈
− pj
mj

Θ(−pj)δ3 [R(Γ)− ξ] δ
(
`‡j − `j

) M∏
i=1
i 6=j

Θ
(
`‡i − `i

)〉
, (5.14)

then the final evolution law for the distribution of intact chains is

∂PA(ξ; t)

∂t
=

M∑
j=1

R′′j (ξ; t)−
M∑
j=1

R′j(ξ; t)− ∂

∂ξ
·
[
ξ̇A(ξ; t)PA(ξ; t)

]
. (5.15)

We have now obtained the general evolution law for the probability distribution of intact chains
with a certain end-to-end vector PA(ξ; t) in Eq. (5.15). It remains an issue, however, that we
require knowledge of the phase space distribution function f(Γ; t), which is necessary to compute
the ensemble averages for the reaction rates Eqs. (5.13) and (5.14). Consequently, we now utilize
transition state theory in order to avoid computing these ensemble averages and therefore eliminate
f(Γ; t) from the evolution equation entirely.

Transition state theory

Our derivation so far is general for noninteracting chains, but we now make our first approximation.
Let the phase space function f(Γ; t) maintain a local equilibrium in each species’ region [173], such
that we may take f(Γ; t) in the phase space region A to be approximately

f(Γ; t) ≈ PA(ξ; t)

P eq
A (ξ)

f eq(Γ) in region A, (5.16)

where P eq
A (ξ) is the equilibrium distribution of the end-to-end vectors of intact chains, and f eq(Γ) =

e−βH(Γ)/q from Eq. (5.3). This is representative of the fact that degrees of freedom not involved
with breaking the chain (such as bond rotation) attain equilibrium much more quickly than those
degrees of freedom associated with breaking the chain (i.e. bond breaking). Consequently, our
transition state theory assumption now prevents us from considering cases where the timescales of
bond breaking become close to those of intact chain dynamics.

The distribution of the end-to-end vectors of chains that have broken via the jth reaction
pathway PBj(ξ; t) can be written by flipping the sign within the jth step function in Eq. (5.7),

PBj(ξ; t) =

〈
δ3 [R(Γ)− ξ] Θ

(
`j − `‡j

) M∏
i=1
i 6=j

Θ
(
`‡i − `i

)〉
. (5.17)
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We may similarly approximate f(Γ; t) in each broken chain phase space region as

f(Γ; t) ≈ PBj(ξ; t)

P eq
Bj

(ξ)
f eq(Γ) in each region Bj, (5.18)

where P eq
Bj

(ξ) is the equilibrium distribution of the end-to-end vectors of chains that have broken

via the jth reaction pathway. The equilibrium probabilities may be written using Eqs. (5.7) and
(5.17) in the equilibrium system, or by using the ratio of partition functions [49, 125] as

P eq
A (ξ) =

〈
δ3 [R(Γ)− ξ]

M∏
j=1

Θ
(
`‡j − `j

)〉eq

=
q∗A(ξ)

q
, (5.19)

P eq
Bj

(ξ) =

〈
δ3 [R(Γ)− ξ] Θ

(
`j − `‡j

) M∏
i=1
i 6=j

Θ
(
`‡i − `i

)〉eq

=
q∗Bj(ξ)

q
, (5.20)

where the partition functions of an intact chain at end-to-end vector ξ and a chain that has broken
via the jth reaction pathway at ξ (the asterisk ∗ denotes the fixed ξ) are given by

q∗A(ξ) =

∫
· · ·
∫
e−βH(Γ)δ3 [R(Γ)− ξ]

M∏
j=1

Θ
(
`‡j − `j

)
dΓ, (5.21)

q∗Bj(ξ) =

∫
· · ·
∫
e−βH(Γ)δ3 [R(Γ)− ξ] Θ

(
`j − `‡j

) M∏
i=1
i 6=j

Θ
(
`‡i − `i

)
dΓ. (5.22)

Similarly, the partition function of an intact chain at ξ in the jth transition state is

q∗‡j(ξ) =

∫
· · ·
∫
e−βH(Γ)δ (pj) δ

3 [R(Γ)− ξ] δ
(
`‡j − `j

) M∏
i=1
i 6=j

Θ
(
`‡i − `i

)
dΓ. (5.23)

Now, after utilizing Eqs. (5.16)–(5.23) (see Appendix C.1), the rates in Eqs. (5.13)–(5.14) become

R′j(ξ; t) =k′j(ξ)PA(ξ; t), (5.24)

R′′j (ξ; t) =k′′j (ξ)PBj(ξ; t), (5.25)

where the forward and reverse reaction rate coefficient functions are respectively given by

k′j(ξ) =
1

β

q∗‡j(ξ)

q∗A(ξ)
, (5.26)

k′′j (ξ) =
1

β

q∗‡j(ξ)

q∗Bj(ξ)
. (5.27)
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While extension-dependent rates have been previously considered for polymer networks [58, 59],
exact relations have not yet been discovered, leaving models to assume they are constant [58, 60,
160, 161, 175], or assume some other form [144, 150, 156, 162, 164, 165, 169] typically inspired by
or in some way similar to the model of Bell [61]. Eqs. (5.26) and (5.27) show that each forward
and reverse reaction rate coefficient function is completely determined by the single-chain model via
the partition functions. These partition functions similarly determine the single-chain mechanical
response and the equilibrium distribution of chain end-to-end vectors in the network [125].

After relating the ratio of the reaction rate coefficient functions to the equilibrium probabilities,

k′′j (ξ)

k′j(ξ)
=

q∗A(ξ)

q∗Bj(ξ)
=
P eq

A (ξ)

P eq
Bj

(ξ)
, (5.28)

we finally rewrite Eq. (5.15), the evolution law for the probability distribution of intact chains as

∂PA(ξ; t)

∂t
= −

M∑
j=1

k′j(ξ)

[
PA(ξ; t)− PBj(ξ; t)

P eq
Bj

(ξ)
P eq

A (ξ)

]
− ∂

∂ξ
·
[
ξ̇A(ξ; t)PA(ξ; t)

]
. (5.29)

This evolution equation depends only upon the independent variables ξ and t. We establish the
evolution equation for the probability distribution of each species of broken chains PBj(ξ; t) in

the following section. Later in Sec. 5.2.2 we constitutively prescribe ξ̇A(ξ; t) as a function of the
deformation.

Evolution of broken chains

In this section, we obtain simplified evolution laws for the probability density distribution of the jth
broken chains PBj(ξ; t), and in the process further simplify Eq. (5.29). To proceed, we first neglect
the possibility that a chain may break via multiple pathways. This is reasonable when all breaking
pathways remain approximately inaccessible without considerable force acting on the chain, since
broken chains will not support the force required to break again. It is also reasonable when at most
one breaking pathway is thermally accessible, such as the case with a chain with a single transient
bond and many strong covalent bonds. This assumption inhibits our ability to model chains with
many highly dynamic bonds, such as those within vitrimers. Second, we neglect the possibility that
broken chains of different reaction pathways may cross-reform, which prevents us from considering
cases where groups of chains break and reform together resulting in altered contour lengths. These
two assumptions allow us to conclude that the total probability that a chain is either intact or is
broken via a single reaction pathway is unity, yielding the conservation law∫∫∫

PA(ξ; t) d3ξ +
M∑
j=1

∫∫∫
PBj(ξ; t) d3ξ = 1. (5.30)

We evaluate Eq. (5.30) at equilibrium and multiply it by the system partition function q, which
with the equilibrium probabilities in Eqs. (5.19) and (5.20) then allows us to relate the partition
functions as

q =

∫∫∫
q∗A(ξ) d3ξ +

M∑
j=1

∫∫∫
q∗Bj(ξ) d3ξ ≡ qA +

M∑
j=1

qBj . (5.31)
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Once we specify a chain model, we can calculate q∗A(ξ) and each q∗Bj(ξ), and with Eq. (5.31) we may
then calculate the equilibrium distributions in Eqs. (5.19) and (5.20). Note that we have defined qA

and qBj in Eq. (5.31), which are the partition functions of unconstrained intact chains and broken
chains, respectively. qA and qBj are equivalently the integrals of q∗A(ξ) and q∗Bj(ξ) over all end-to-end
vectors ξ. By the principal thermodynamic connection formula [49] for the Helmholtz free energy
ψ = −bT ln q, we obtain

∆Ψ0j ≡ −bT ln

(
qBj

qA

)
, (5.32)

where ∆Ψ0j is then the net Helmholtz free energy change for the jth breaking reaction alone (only
having to do with the reaction coordinate, not the rest of the chain). We now approximate the two
ends of any broken chain as effectively noninteracting, which allows the partition function q∗Bj(ξ)
to be constant in ξ,

qBj ≈ VBjq
∗
Bj
, (5.33)

where each VBj has units of volume. Using Eq. (5.32), we can define VBj in terms of qA, q∗Bj , and
β∆Ψ0j as

VBj ≡ (qA/q
∗
Bj

)e−β∆Ψ0j . (5.34)

Though we have treated the broken chain mechanics as independent of ξ, the reforming reaction rate
coefficient function k′′j (ξ) in Eq. (5.27) is still a strong function of ξ due to q∗‡j(ξ). Our approximation

in Eq. (5.33) causes all broken chain end-to-end vectors to be equally probable and therefore allows
us to equate the probability of broken chains at end-to-end vector ξ to the average of broken chains
at any end-to-end vector,

PBj(ξ; t) ≈
P tot

Bj
(t)

VBj

. (5.35)

Since we do not track broken chains by end-to-end vector, we rewrite the conservation law from
Eq. (5.30) as

∫∫∫
PA(ξ; t) d3ξ +

M∑
j=1

P tot
Bj

(t) = 1, (5.36)

and, after taking the time derivative,

∫∫∫
∂PA(ξ; t)

∂t
d3ξ +

M∑
j=1

∂P tot
Bj

(t)

∂t
= 0. (5.37)

Applying the conservation requirement given by Eq. (5.31) and the relation between the partition
functions given by Eq. (5.33), we may now rewrite the equilibrium probabilities from Eqs. (5.19)
and (5.20) as
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P eq
A (ξ) =

1

1 +
∑M

`=1 e
−β∆Ψ0`

(
q∗A(ξ)∫∫∫
q∗A(ξ̃) d3ξ̃

)
, (5.38)

P tot,eq
Bj

=
e−β∆Ψ0j

1 +
∑M

`=1 e
−β∆Ψ0`

, (5.39)

and the evolution of the intact chains from Eq. (5.29) as

∂PA(ξ; t)

∂t
= −

M∑
j=1

k′j(ξ)

[
PA(ξ; t)−

P tot
Bj

(t)

P tot,eq
Bj

P eq
A (ξ)

]
− ∂

∂ξ
·
[
ξ̇A(ξ; t)PA(ξ; t)

]
. (5.40)

After writing the analogous evolution law for PBj(ξ; t), integrating for P tot
Bj

(t), and using Eq. (5.35),

the evolution equation for P tot
Bj

(t) is given by

∂P tot
Bj

(t)

∂t
=

∫∫∫
k′j(ξ)

[
PA(ξ; t)−

P tot
Bj

(t)

P tot,eq
Bj

P eq
A (ξ)

]
d3ξ −

P tot
Bj

(t)

VBj

∫∫∫ [
∂

∂ξ
· ξ̇B(ξ; t)

]
d3ξ. (5.41)

The last term in Eq. (5.41) is found equal to zero as follows: Eq. (5.40) is integrated over all ξ and
the conservation requirement in Eq. (5.37) is applied in substituting in for P tot

Bj
(t), where all the

reaction-related terms then cancel. We then apply the divergence theorem to this integral, which
produces a balance law that we satisfy by requiring that the integrand is zero for all ξ, which is[

ξ̇A(ξ; t)PA(ξ; t) +
M∑
j=1

ξ̇B(ξ; t)
P tot

Bj
(t)

VBj

]
∂ξA

= 0. (5.42)

Here ∂ξA is the boundary of the region A with outward-pointing unit normal vector n̂∂ξA, a surface
beyond which no intact chain may exist. Eq. (5.42) is a balance law for intact chains that are
instantaneously broken via ξ̇A(ξ; t) carrying them across ∂ξA. We will now assume that a negligible
amount of intact chains become extended to this intact limit without first breaking via the chemical
reaction, which is PA(ξ; t)|∂ξA ≈ 0. We then have ξ̇B(ξ; t)|∂ξA ≈ 0 via Eq. (5.42), which causes the
last term in Eq. (5.41) to become zero after again using the divergence theorem. Eq. (5.41) is now

∂P tot
Bj

(t)

∂t
=

∫∫∫
k′j(ξ)

[
PA(ξ; t)−

P tot
Bj

(t)

P tot,eq
Bj

P eq
A (ξ)

]
d3ξ. (5.43)

Eqs. (5.40) and (5.43) together with a prescription for ξ̇A(ξ; t) create a set of evolution equations that
govern the polymer network, are reasonable to solve, and have a firm foundation in the principles of
statistical mechanics. Equipped with this framework to evaluate the relevant probabilities of chains
in the network, we now use statistical thermodynamics to formulate the Helmholtz free energy and
then use macroscopic constitutive theory to obtain the constitutive relation for the Cauchy stress.
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5.2.2 Macroscopic theory

With our statistical mechanical framework complete, we turn now to the macroscopic description
of the network. We begin by formulating the Helmholtz free energy of the network using statistical
thermodynamics, which preserves our statistical mechanical framework as we move into the contin-
uum scale. Knowledge of the Helmholtz free energy allows us to utilize the Coleman-Noll procedure
[82, 83] to obtain constitutive relations for the entropy density and Cauchy stress. We do so af-
ter assuming that the temperature (T ), deformation gradient (F), probability density distribution
of attached chains (PA), and probability of each broken chain type (P tot

Bj
) form a complete set of

thermodynamic state variables. We additionally assume that, on average, the deformation gradient
acts affinely on the intact chain end-to-end vectors. Lastly, we show that the residual inequality –
solely dissipation due to the breaking/reforming of chains – is already arbitrarily satisfied for the
evolution laws we have derived in Sec. 5.2.1.

Network Helmholtz free energy

The Helmholtz free energy A (t) of the network is analogous to that of a system of noninteracting
particles of different chemical species [49]

A (t) = NA(t)µA(t) +
M∑
j=1

NBj(t)µBj(t)−NbT (t), (5.44)

with the chemical potentials µi(t) given by

µi(t) = −bT ln

[
qi

Ni(t)

]
, i = A,B1, . . . ,BM , (5.45)

where Ni(t) is the number of either intact or broken chains, and N is the constant total number of
chains. We use Gibbs’ postulate [49] to write µA(t) as the time-dependent average

µA(t) =
1

P tot
A (t)

∫∫∫
PA(ξ; t)µ∗A(ξ; t) d3ξ, (5.46)

where (using Ni(t) = P tot
i (t)N) the chemical potential of an intact chain at end-to-end vector ξ is

µ∗A(ξ; t) = −bT ln

[
q∗A(ξ)

NPA(ξ; t)

]
. (5.47)

The broken chains have been assumed to be insensitive to extension, so we similarly utilize their
chemical potentials as independent of the end-to-end vector ξ,

µBj(t) = −bT ln

[
VBjq

∗
Bj

NP tot
Bj

(t)

]
. (5.48)

We may now write the Helmholtz free energy density a(t) = A (t)/V of our incompressible network
of noninteracting polymer chains as

a(t) = n

∫∫∫
PA(ξ; t)µ∗A(ξ; t) d3ξ + n

M∑
j=1

P tot
Bj

(t)µBj(t)− nbT (t)− p[J(t)− 1], (5.49)
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where n = N/V is the constant total number density of chains, and p is the pressure acting as a
Lagrange multiplier enforcing the incompressibility constraint that J = det(F) = 1. This specific
formulation of a(t) in Eq. (5.49) is essential to our approach: in Appendix C.2.1, we show that it
allows the equilibrium probabilities obtained from minimizing a(t) with respect to each probability
to exactly match those obtained beforehand from the statistical mechanical derivation (Eqs. (5.38)
and (5.39)).

Constitutive relations

The time derivative of the Helmholtz free energy density is

ȧ(t) = n

∫∫∫
ṖA(ξ; t)µ∗A(ξ; t) d3ξ + n

M∑
j=1

Ṗ tot
Bj

(t)µBj(t)− nkṪ (t)− p(t) [1 : L(t)] , (5.50)

where L = Ḟ ·F−1 is the velocity gradient. We have factored out the time derivatives of the chem-
ical potentials after utilizing the conservation requirement from Eq. (5.37). Thermodynamically
admissible processes must satisfy the second law of thermodynamics regarding irreversible entropy
production, which is embodied in the Clausius-Duhem inequality

ȧ+ sṪ − σ : L ≤ 0, (5.51)

where s(t) is the entropy density and σ(t) is the Cauchy stress tensor [134]. Note that this sim-
plified form of the inequality already assumes incompressibility, neglects nonmechanical work, and
assumes the classical constitutive relations for the entropy flux, the entropy source, and the heat flux
[135]. Further, we will not impose hyperbolicity requirements that would guarantee finite speeds of
propagation [176].

We will assume that T (t), F(t), PA(ξ; t), and P tot
Bj

(t) together create a complete set of thermo-
dynamic state variables. This allows us to treat time derivatives of constitutive variables like a(t)
as fully implicit, where we may expand those time derivatives as partial derivatives with respect
to the state variables. The three independent thermodynamic processes accounted for through our
state variables are temperature change, deformation, and the chain breaking/reforming chemical
reactions (denoted as rxn). The evolution of a(t) is then expanded as

ȧ =

(
∂a

∂T

)
F,rxn

Ṫ +

(
∂a

∂F

)
T,rxn

: Ḟ−Drxn, (5.52)

where Drxn is the chemical dissipation per unit volume, calculated from the rate of change of
Helmholtz free energy density over all breaking/reforming reactions

Drxn ≡ −
(
∂a

∂t

)
F,T

. (5.53)

Substitution of our expansion into the Clausius-Duhem inequality in Eq. (5.51) yields[(
∂a

∂T

)
F,rxn

+ s

]
Ṫ −Drxn +

[(
∂a

∂F

)
T,rxn

· FT − σ
]

: L ≤ 0. (5.54)
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We first consider the set of processes where the temperature varies arbitrarily, the deformation is
held fixed, and the reactions do not proceed. In order to arbitrarily satisfy the inequality, we must
then have

s = −
(
∂a

∂T

)
F,rxn

, (5.55)

which is the expected constitutive relation for the entropy density. The inequality in Eq. (5.54)
then becomes [(

∂a

∂F

)
T,rxn

· FT − σ
]

: L−Drxn ≤ 0. (5.56)

We next consider processes where the motion varies arbitrarily via L(t) and the reactions do not
proceed. Since we have assumed to have a complete set of thermodynamic state variables, and
that set does not include time derivatives of the deformation gradient, we have already ruled out
dissipative stresses [135]. In order to arbitrarily satisfy the inequality in Eq. (5.56), we must have

σ =

(
∂a

∂F

)
T,rxn

· FT , (5.57)

which is the form of the stress for a hyperelastic material [134]. We will now assume that, on average,
the end-to-end vectors ξ are affinely deformed by the deformation gradient F(t), which can be
expanded as ξ̇A(ξ; t) = L(t)·ξ. After applying this assumption and simplifying (see Appendix C.2.2),
the evolution equation for intact chains Eq. (5.40) becomes

∂PA(ξ; t)

∂t
= −

[
∂PA(ξ; t)

∂ξ
ξ

]
: L(t)−

M∑
j=1

k′j(ξ)

[
PA(ξ; t)−

P tot
Bj

(t)

P tot,eq
Bj

P eq
A (ξ)

]
, (5.58)

and the stress in Eq. (5.57) becomes

σ(t) = n

∫∫∫
PA(ξ; t)

∂ψ∗A(ξ)

∂ξ
ξ d3ξ − p(t)1. (5.59)

This general form of the stress has been obtained previously [125], but the evolution of PA(ξ; t) is
now more complicated here due to the breaking and reforming of chains.

Residual inequality

Now that we have established each constitutive relation, we are left with the residual portion of the
Clausius-Duhem inequality due to the dissipation Drxn(t). Showing that Drxn(t) ≥ 0 is similar to the
procedure for a reacting system of a finite number of discrete chemical species [177, 178], but here we
have the additional complication of having the reactions (chains breaking and reforming) occurring
over the continuous variable ξ (see Appendix C.2.3 for details). We find that the dissipation may
be written succinctly as

Drxn(t) =
M∑
j=1

∫∫∫
D∗j (ξ; t) d3ξ, (5.60)
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where the dissipation density for the jth reaction occurring at the end-to-end vector ξ is defined as

D∗j (ξ; t) ≡ nbT
[
R′j(ξ; t)−R′′j (ξ; t)

]
ln

[R′j(ξ; t)

R′′j (ξ; t)

]
. (5.61)

Since [R′j(ξ; t)−R′′j (ξ; t)] ln[R′j(ξ; t)/R′′j (ξ; t)] ≥ 0 and nbT > 0, we are able to conclude

D∗j (ξ; t) ≥ 0 for all j, and therefore Drxn(t) ≥ 0. (5.62)

This result means that not only is the residual inequality satisfied, but each chain breaking/re-
forming reaction at every end-to-end vector has a positive semi-definite dissipation. Further, this is
found without any additional restrictions on the thermodynamic state variables or the obtained con-
stitutive relations, which can be directly attributed to the strong statistical mechanical foundation
we have incorporated.

5.2.3 General theory summary

Our general theory is now complete and can be utilized as illustrated by Fig. 5.2. Two inputs
are needed to constitutively define the polymer – the single-chain model and the total number
density of chains n. Two external conditions are also prescribed as inputs – the temperature
T and the deformation gradient F(t). A single-chain model is chosen through specification of a
Hamiltonian H(Γ), which contains M transition state coordinates `j and locations `‡j. Next, we
calculate the partition function at the end-to-end vector ξ of the intact chains q∗A(ξ) using Eq. (5.21),
of each broken chain species q∗Bj (at some large ξ where the two broken ends do not interact) using
Eq. (5.22), and of each transition state q∗‡j(ξ) using Eq. (5.23). We also compute the net free

energy changes ∆Ψ0j using H(Γ) or otherwise specify them as parameters. Equipped with these
quantities, we are able to compute each reaction rate coefficient function k′j(ξ) using Eq. (5.26),
the equilibrium probability density distribution of intact chains P eq

A (ξ) using Eq. (5.38), and the
equilibrium probability of each broken chain species P tot,eq

Bj
using Eq. (5.39). We also compute

ψ∗A(ξ), the Helmholtz free energy of an intact chain at the end-to-end vector ξ, using Eq. (C.18).
With a prescribed incompressible deformation history and assuming initial conditions, we have all
the necessary information to formulate the evolution law for the probability density distribution of
intact chains PA(ξ; t) using Eq. (5.58) and those for the probability of each broken chain species
P tot

Bj
(t) using Eq. (5.43). The stress σ(t) is then computed using Eq. (5.59), where the pressure p(t)

is solved for using the traction boundary conditions.

5.3 Single-chain model specification

We are now ready to specify a single-chain model and push it through our general framework as
shown Fig. 5.2, computing each quantity of interest to ultimately obtain the stress as a function
of deformation. For the materials we will model, we require a single-chain model that incorporates
force-sensitive reversible bond breaking. Force-sensitive irreversible and force-insensitive (transient)
reversible bonds are special cases of this broader class. We propose the uFJC for our single-chain
model: a freely jointed chain of flexible links, each with a potential u that depends on the difference
between the link length and its rest-length. The Morse potential [179] is used for each link in order
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H(Γ)

`j , `
‡
j ,∆Ψ0,j ,

q∗A(ξ), q∗Bj
(ξ),

q∗‡j (ξ)

k′j(ξ)

P eq
A (ξ), P tot,eq

Bj

∂ψ∗A(ξ)

∂ξ

PA(ξ; t) σ(t)

F (t) F (t) F (t)

Internal statistical
mechanical framework

H(Γ)

T F(t) n

Input: temperature Input: deformation Input: number density

Input: single-chain
model Hamiltonian

Output: stress

Figure 5.2: Diagram describing the utilization of the general theory developed in Sec. 5.2. After specifying the
single-chain model Hamiltonian H(Γ), the temperature T , the deformation gradient F(t), and the total number
density of chains n, all quantities of interest may be systematically computed, ultimately resulting in the stress σ(t).

to allow the links to break and reform. In the following section, we compute the functions related
to the mechanical behavior, equilibrium distribution, and kinetics of breaking/reforming for the
uFJC single-chain model and provide results with the Morse potential. We then exactly solve the
evolution equation for the distribution of intact chains in the network for all single-chain models
with reaction pathways that are all equivalent. Then we present how small adjustments can be
made to the framework to account for when some links in the uFJC are weaker than the rest.

5.3.1 The uFJC model

The uFJC model is a freely jointed chain of Nb flexible links, each with potential u(`) that depends
on the difference between the link length ` and its rest-length `b. This is similar to the freely jointed
chain or FJC model [1, 50], but with the rigid links replaced by these flexible ones. If the potential
is strictly harmonic, we retrieve the extensible freely jointed chain or EFJC model [57]. The links
of the uFJC are considered broken if ` > `‡ and intact otherwise. Each of the Nb + 1 hinges are
considered to be point masses with a mass of m, while the links are massless. The single-chain
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Hamiltonian of this model is

H(Γ) =

Nb+1∑
i=1

p2
i

2m
+

Nb∑
i=1

u (`i) . (5.63)

We substitute this Hamiltonian into Eq. (5.21) to compute q∗A(ξ) = q∗A,momq
∗
A,con(ξ), the partition

function of an intact chain with end-to-end vector ξ, where “mom” and “con” denote the momentum
and configuration contributions. Since the link potential only gives information about the intact
state of the links, we must treat the net Helmholtz free energy change when breaking a link, ∆Ψ0,
as an independent parameter. While we may compute q∗A,mom exactly without trouble [49], q∗A,con(ξ)
cannot be computed analytically in general and is difficult to evaluate numerically. This issue
is typically resolved through computation of the Gibbs (isotensional) ensemble partition function
and transforming back to the Helmholtz (isometric; canonical) partition function we desire. This
transformation is accomplished using an inverse Fourier transform, which is often approximated
using a Legendre transformation when chains are sufficiently long [53, 180], the so-called Gibbs-
Legendre method [125] of obtaining q∗A,con(ξ). After asymptotically approximating the mechanical
response of the uFJC in the Gibbs ensemble, we will integrate it and use the Gibbs-Legendre method
to obtain the Helmholtz free energy and then compute the desired partition function.

We obtain an asymptotic approximation for the single-chain mechanical response as

γ(η) ∼ L(η) + λ(η)− 1 for κ� 1, (5.64)

where γ ≡ ξ/Nb`b is the nondimensional end-to-end length, L(η) = coth(η) − 1/η is the Langevin
function, λ(η) is the link stretch `/`b under the nondimensional force η ≡ βf`b, and

κ ≡ β`2
b

∂2u(`)

∂`2

∣∣∣∣
`=`b

(5.65)

is the nondimensional link stiffness. The full derivation of Eq. (5.64) is in Appendix C.3.1, where it is
shown that the entropically-based mechanical response of the FJC (given by the Langevin function)
may be approximated as decoupled from the link stretching for sufficiently stiff links. There has
been recent interest in similarly supplementing entropic polymer chain models with potential energy
contributions [67, 75, 78, 130, 142–144] by a method where a chain free energy is minimized with
respect to the potential degrees of freedom [62]. Although this current method performs well, we
recommend that the asymptotic approach be used instead for both practical and physical reasons.
Practically, asymptotically-correct formulas such as those we provide here for the uFJC are easier to
use than the current method, which requires implicitly solving nonlinear algebraic equations during
the minimization process. Physically, the minimization of thermodynamic free energies may only
involve macroscopic thermodynamic state variables, not phase space degrees of freedom such as link
length, which would approach their potential energy minima as thermal energy becomes scarce. The
apparent success of the current method can be attributed to the dominance of potential energy over
the free energy minimization in the same limit, which in effect produces similar results.

We select the Morse potential [179] as the specific form of the uFJC link potential,

u(`) = ub

[
1− e−

√
kb/2ub(`−`b)

]2

, (5.66)
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Figure 5.3: Single-chain mechanical response when using the Morse-FJC model. (a) The nondimensional force
η = βf`b as a function of the nondimensional end-to-end length γ = ξ/Nb`b for βub = 25 and varying κ. (b) η as a
function of γ for κ = 200 and varying βub.

where ub is the depth of the Morse potential energy well and kb is the curvature near the bottom
of the well (the stiffness). The nondimensional parameters here are the nondimensional energy
βub, the nondimensional stiffness κ ≡ βkb`

2
b , and the link stretch λ ≡ `/`b. The stretch λ‡ ≡

1 + ln(2)
√

2βub/κ is the transition state stretch since this is where the nondimensional force η will

reach its maximum possible value of ηmax =
√
κβub/8. The derivative of the Morse potential gives

the force as a function of link length, which is then inverted and rescaled to obtain the stretch of a
single link under force,

λ(η) = 1 +

√
2βub
κ

ln

[
2

1 +
√

1− η/ηmax

]
for η ≤ ηmax =

√
κβub

8
. (5.67)

Utilizing Eq. (5.67) with Eq. (5.64), we plot the mechanical response of the Morse-FJC in Fig. 5.3,
varying κ in Fig. 5.3(a) and varying βub in Fig. 5.3(b). As κ increases, we observe a more dramatic
transition near γ = 1 as the increasingly-stiff links begin to be stretched. Increasing κ directly
increases the maximum force ηmax and causes it to be reached at lower stretches, thereby causing
the maximum nondimensional end-to-end length to decrease with increasing κ (γmax ∼ λ‡). As we
increase βub, we see an increase in both ηmax and γmax; the overall mechanical response away from
ηmax is unchanged. When varying either κ or βub, the mechanical response at low γ is unchanged
since this regime is dominated by the initially-compliant entropic behavior of L(η).

We now compute the other thermodynamic functions of interest: the equilibrium distribution
P eq

A (ξ) and the reaction rate coefficient function k′(ξ). For this single-chain model it is most practical
to work in terms of the nondimensional chain end-to-end vector γ = ξ/Nb`b. Further, our single-
chain functions and equilibrium distributions depend only on γ =

√
γ · γ. We therefore introduce

the nondimensional configurational Helmholtz free energy per link

ϑ∗A,con(γ) ≡ βψ∗A,con(γ)

Nb

. (5.68)
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We will assume that the number of links in our chain Nb remains high enough to utilize the Gibbs-
Legendre method [125] to approximate ψ∗A,con(γ), which in this case causes ϑ∗A,con(γ) to be indepen-
dent of Nb. While the Gibbs-Legendre method is invalid under sufficiently small forces [131], the
regime of end-to-end lengths where this matters essentially vanishes with increasing Nb [53, 180].
Further, these tiny forces contribute little when integrating over all end-to-end lengths in Eq. (5.59)
for the stress, causing the Gibbs-Legendre method to become correct as Nb increases [125]. As
detailed in Appendix C.3.2, we obtain

ϑ∗A,con(γ) = ln

{
η exp[ηL(η)]

sinh(η)

}
+ βu(η), (5.69)

where η = η(γ) is implied, which allows us to compute the nondimensional equilibrium distribution

Peq
A (γ) =

1

1 +Nbe−β∆Ψ0

(
e−Nbϑ

∗
A,con(γ)∫∫∫

e−Nbϑ
∗
A,con(γ̃) d3γ̃

)
. (5.70)

In Appendix C.3.2 we also obtain the forward reaction rate coefficient function

k′(γ) =
ω‡
2π

e−β∆Ψ∗‡(γ). (5.71)

Here ω‡ ≡
√

2κ/mβ`2
b is the attempt frequency, and ∆Ψ∗‡(γ) is the Helmholtz free energy barrier

of a single link to its transition state as a function of chain extension,

∆Ψ∗‡(γ) ≡ u(`‡)− u(η)− bT ln

{
λ‡ sinh(λ‡η) exp[ηL(η)]

sinh(η) exp[λ‡ηL(λ‡η)]

}
. (5.72)

Note that we often use the initial rate k′(0) in place of the attempt frequency ω‡ or mass m as
a more convenient but equivalent parameterization. The Helmholtz free energy barrier ∆Ψ∗‡(γ)
consists of a positive contribution from the potential energy difference and a negative contribution
from the entropy difference. The initial nondimensional barrier is β∆Ψ∗‡(0) = βub/4−2 lnλ‡, where

recall λ‡ = 1 + ln(2)
√

2βub/κ. Due to our requirement κ� 1, the nondimensional potential energy
barrier βub will tend to dominate the scale of β∆Ψ∗‡(γ) and therefore k′(γ). If we assume λ‡ ≈ 1, we
ignore the entropic term and take u(η) ≈ ηλ(η)/2, which then causes k′(γ) in Eq. (5.71) to resemble
the short-distance force-modified-barrier transition state theories [61, 181] that have been applied
to polymer chains [69, 76, 156, 163, 182, 183]. The general case behavior of k′(γ) here in Eq. (5.71)
is more similar to the model of Dudko et al. [184] than these short-distance approximated models,
especially since it accounts for both entropic and potential energy effects. Dudko’s model is based on
Kramers’ theory of diffusive barrier crossing [173, 185] and has proved useful both in polymer chain
AFM experiments [186] and polymer network constitutive models [130]. Our formulation for k′(γ)
has an advantage over Dudko’s model: our k′(γ) is directly connected to the statistical mechanics
of the single-chain model, which provides guarantees such as dissipation inequality satisfaction and
solution existence.

The reaction rate coefficient k′(γ) is plotted as a function of the nondimensional end-to-end
length γ in Fig. 5.4 for βub = 25 and varying κ. We find that k′(γ) decreases slightly from k′(0)
as the chain is extended, which is due to the increasing entropy of the links. After a critical chain
extension just above unity, we find that k′(γ) increases dramatically due to the potential energy
barrier to the transition state being rapidly reduced. As κ is increased, this trend becomes even
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Figure 5.4: The reaction rate coefficient function k′(γ) scaled by its initial value k′(0) as a function of the nondi-
mensional end-to-end length γ = ξ/Nb`b, using the Morse-FJC model for βub = 25, and varying κ.

more dramatic since the potential energy barrier is proportional to κ, and the observed critical
extension approaches unity. Varying βub provides little change to the shape of k′(γ)/k′(0) and
effectively varies the maximum allowable extension (not shown). Eqs. (5.71)–(5.72) show that k′(0)
decays exponentially fast as βub becomes large, so varying βub changes the scale of k′(γ) but not its
shape. Having both κ � 1 and βub � 1 simultaneously tends to result in reaction rate coefficient
function k′(γ) that is essentially constant before rapidly becoming effectively infinite at and above
some critical extension γc & 1, similar to the κ = 5000 case in Fig. 5.4.

5.3.2 Distribution evolution and solution

Now that the single-chain mechanics and kinetics for the uFJC model have been formulated, we next
determine the evolution equation for the distribution of intact chains in the network and calculate
the stress using Eq. (5.59). We will continue writing our results in terms of the nondimensional
chain end-to-end vector γ = ξ/Nb`b, and we correspondingly utilize the nondimensional distribution
PA(γ; t) ≡ (Nb`b)

3PA(ξ; t). It is equally probable that any given link will break, since each behaves
the same under the Gibbs-Legendre method, so when we begin at equilibrium, we will have the
same P tot

Bj
(t) = P tot

B (t)/M for each j of the M = Nb paths, and therefore we may apply conservation
and simplify Eq. (5.58) using

ρ(t) ≡
P tot

Bj
(t)

P tot,eq
Bj

=
P tot

B (t)

P tot,eq
B

=
1−

∫∫∫
PA(ξ; t) d3ξ

1−
∫∫∫

P eq
A (ξ) d3ξ

=
1−

∫∫∫
PA(γ; t) d3γ

1−
∫∫∫

Peq
A (γ) d3γ

. (5.73)

Eqs. (5.58) and (5.73) allows us to retrieve a linear first order integro-partial differential equation
for PA(γ; t),

∂PA(γ; t)

∂t
= −

[
∂PA(γ; t)

∂γ
γ

]
: L(t)− k(γ)

{
PA(γ; t)− Peq

A (γ)

P tot,eq
B

[
1−

∫∫∫
PA(γ̃; t) d3γ̃

]}
,

(5.74)
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where k(γ) ≡ Nbk
′(γ) is the net reaction rate coefficient function. The proportionality of the net

rate of breaking k(γ) to the number of links Nb is the effect predicted by Lake and Thomas [187]
and has been used by recent models [150]. This Lake-Thomas effect is also observed in the manner
of our Gibbs-Legendre approximation, which causes an equal force to be experienced across all links
and the total energy to scale with Nb. Eq. (5.74) appears similar to several from the literature [59,
60, 160, 161, 175], but there are two fundamental differences. First, two evolution equations are
typically written – one for the normalized probability PA(γ; t)/P tot

A (t) and another for the con-
centration nP tot

A (t) – rather than the single evolution equation for PA(γ; t) in Eq. (5.74). Second,
it is often assumed that one may prescribe both forward and reverse reaction rate coefficients in-
dependently, where the forward rate would be the same k(γ) here, but the reverse rate would be
ka(γ)Peq

A (γ)/P tot,eq
B . Not only would any ka(γ) 6= k(γ) violate the statistical mechanical derivation

we have outlined in Sec. 5.2.1, namely Eq. (5.28), but it would also cause the equilibrium distri-
bution of the evolution equation [ka(γ)/k(γ)]Peq

A (γ) to differ from the equilibrium distribution
from statistical mechanics Peq

A (γ). Separately specifying the forward and reverse reaction rate co-
efficient functions then causes a thermodynamic inconsistency regardless of the single-chain model
used. Conceptually, the kinetic rate(s) at which chemical systems approach equilibrium should not
change the equilibrium configuration, since statistical thermodynamics allows equilibrium configu-
rations to be obtained independently of the kinetics.

We present the path to obtain the exact solution to Eq. (5.74) in Appendix C.4. For PA(γ; t ≤
0) = Peq

A (γ) and F(t ≤ 0) = 1, the solution can be written as

PA(γ; t) =

∫ t

−∞
Peq

A

[
(t)F(τ) · γ

]
k
[

(t)F(τ) · γ
]

exp

{
−
∫ t

τ

k
[

(t)F(s) · γ
]
ds

}
ρ(τ) dτ, (5.75)

where the relative deformation [135] is defined as (t)F(τ) ≡ F(τ) · F−1(t), and where the solution
for ρ(t), consistent with its definition in Eq. (5.73) and the solution for PA(γ; t) in Eq. (5.75), is
given in Appendix C.4. The stress from Eq. (5.59), which in nondimensional form is

σ(t) + p(t)1

n/β
= Nb

∫∫∫
PA(γ; t) η(γ)

(
γγ

γ

)
d3γ, (5.76)

can now be evaluated at any time t. As shown in Appendix C.4.2, the relation for the stress
obtained when substituting into Eq. (5.75) is objective. For k(γ) ∝ k′(γ) and Peq

A (γ) derived
from a single-chain model, such as the Morse-FJC, our solution is guaranteed to converge. If one
wishes to instead prescribe positive semidefinite functions k′(γ) and Peq(γ) independently of a
chain model, our solution still holds as long as∫∫∫

k′(γ)Peq
A (γ) d3γ <∞. (5.77)

If this condition is not met, not only does our solution not hold, but there is no solution in general,
which means numerical methods will also fail. This condition in Eq. (5.77) also keeps the dissipation
Drxn(t) in Eq. (5.60) finite. Thus, given admissible k′(γ), Peq

A (γ), and F(t), we may evaluate
PA(γ; t) in Eq. (5.75) when integrating for the stress in Eq. (5.76). Our results here in Sec. 5.3.2
can be applied to other chains that have all identical reaction pathways and are long enough to
utilize the Gibbs-Legendre method, or to chains of any length that instead have only a single
reaction pathway (i.e. a chain with a single weak link).
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5.3.3 Adjustments for inhomogeneous chains

Polymer networks are often synthesized to contain sacrificial bonds that are designed to break or
activate before the rest of the bonds in the network [11, 16, 188]. We can adjust our previous rela-
tions to accommodate these cases – we consider the same uFJC model, but now with Nb breakable
links and N#

b unbreakable links. The unbreakable links are assumed to remain in the harmonic

region (effectively EFJC), have rest-length `#
b , and nondimensional stiffness κ#. Due to the nature

of the Gibbs-Legendre method, we may simply add these links onto our asymptotic approximations
for the mechanical response and Helmholtz free energy. Beginning with the mechanical response in
Eq. (5.64), for an inhomogeneous chain we now have

γ(η) ∼ Nb

Nb + ςN#
b

[L(η) + λ(η)− 1] +
ςN#

b

Nb + ςN#
b

[
L(ςη) +

ςη

κ#

]
, (5.78)

where ς ≡ `#
b /`b is the ratio of rest-lengths of the two link types. Note that the contour length

of the chain that scales ξ for γ is now Nb`b + N#
b `

#
b = Nb`b(1 + ςN#

b /Nb). Similarly, we adjust
Eq. (5.69) for the nondimensional configurational Helmholtz free energy

(
Nb +N#

b

)
ϑ∗A,con(γ) ∼ Nb

[
ln

{
η exp[ηL(η)]

sinh(η)

}
+ βu(η)

]
+N#

b

[
ln

{
ςη exp[ςηL(ςη)]

sinh(ςη)

}
+

(ςη)2

2κ#

]
,

(5.79)
The equilibrium distribution Peq

A (γ) is still given by Eq. (5.70) after taking Nbϑ
∗
A,con(γ) 7→ (Nb +

N#
b )ϑ∗A,con(γ) and using Eq. (5.79). The forward rate coefficient function k′(γ) is still given by

Eqs. (5.71)–(5.72), and the net reaction rate coefficient function is still k(γ) = Nbk
′(γ). The

nondimensional stress from Eq. (5.76) is now

σ(t) + p(t)1

n/β
=
(
Nb + ςN#

b

)∫∫∫
PA(γ; t) η(γ)

(
γγ

γ

)
d3γ. (5.80)

The inhomogeneous single-chain mechanical response and reaction rate coefficient function is studied
in Fig. 5.5 for varying κ#. For these results we use Nb = 1, N#

b = 8, κ = 200, βub = 25, and ς = 1.
For κ# < κ, the mechanical response of the chain is dominated by the stretching of the unbreakable
links, and the stiffer breakable link is stretched slowly due to the smaller forces reached per overall
extension. This in turn causes the reaction rate coefficient function to more gradually increase
with extension since the breakable link will require larger chain extensions to experience the forces
necessary for it to begin breaking. For κ# > κ, the mechanical response of the chain is dominated
by the stretching of the breakable link, where for γ > 1 the chain extension becomes localized almost
entirely in stretching the breakable link. Due to this stretch localization, the reaction rate coefficient
function begins to spike almost instantaneously at γ = 1. We also observe that for κ# � κ we
may instead take κ# → ∞ to obtain an accurate FJC-based approximation, which is equivalent
(after switching the Morse potential to the relevant potential) to many recent models [62, 67, 75].
Interestingly, combining κ# →∞ with ς →∞ results in the FJC model that fails instantaneously
for some γc . 1, which is a simplified form of the approach of Vernerey et al. [81].
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Figure 5.5: Single-chain functions for the inhomogeneous Morse-FJC model with Nb = 1, N#
b = 8, κ = 200,

βub = 25, and ς = 1, while varying κ#. (a) The nondimensional force η = βf`b as a function of the nondimensional

end-to-end length γ = ξ/`b(Nb + ςN#
b ). (b) The reaction rate coefficient function k′(γ) scaled by its initial value

k′(0) as a function of γ.

5.4 Macroscopic results

Now that we have implemented the uFJC single-chain model within our general theory, the resulting
constitutive model is applied to predict the mechanics of polymer networks with bond breaking.
First, we consider two special cases (1) where chains break rate-independently and irreversibly, and
(2) where chains dynamically break and reform in a transient manner. In either case, we compare
the theoretical results from the specialized models to experimental results from exemplary polymers
in the literature. Next, we demonstrate the features of the general model and examine the results in
several parametric studies. We then apply the general model to another polymer that is considered
to have force-sensitive reversible chain breaking.

5.4.1 Rate-independent irreversible breaking

The reaction rate coefficient function k′(γ) often behaves as being nearly constant at its initial value
k′(0) before suddenly becoming effectively infinite beyond some critical extension γc, as observed in
Figs. 5.4–5.5. Physically, this corresponds to stiff but breakable links remaining unstretched until
the entire chain is extended past the contour length, where the high and rapidly increasing force
required for further extension almost immediately breaks the chain. When thermal energy alone is
insufficient to break the links, we neglect the force-free breaking by letting k′(0) → 0, which then
also implicitly neglects reforming. Mathematically, the capability to neglect k′(0) results from the
nondimensional link energy βub being sufficiently large in order to cause k′(0) ∝ e−βub to become
negligible compared to the slowest rate 1/T , where T is the total time of testing. As shown in
Appendix C.4.4, the solution for the distribution of intact chains PA(γ; t) in this special case of
rate independent irreversible breaking simplifies to

PA(γ; t) = Peq
A

[
F−1(t) · γ

]
Θ(γ; t, 0), (5.81)
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where the yield function Θ(γ; t, τ) is defined as

Θ(γ; t, τ) ≡
{

1,
∥∥

(t)F(s) · γ
∥∥

2
≤ γc ∀s ∈ [τ, t],

0, otherwise.
(5.82)

Similar forms of this special case have been considered previously, sometimes accounting for vari-
ability in the value of γc [81]. Here, if we take γc → ∞, chains never break and we retrieve
PA(γ; t) = Peq

A [F−1(t) · γ], the expected solution for a network of non-breaking chains [125].
This irreversible breaking is especially relevant when considering the sacrificial networks designed

to break down within toughened elastomers. These polymers experience noticeable hysteresis under
cyclic deformation, exhibiting the Mullins effect [189] and dissipating considerable amounts of energy
[190]. Here, we consider the triple ethyl acrylate network (EA0.5EAEA) of Ducrot et al. [11]. The
first network (denoted EA0.5) is synthesized using ethyl acrylate monomers and mechanoluminescent
crosslinkers that are specifically weaker than the EA links, allowing the damage in the first network
to be visualized. The second network and third networks (each denoted EA) are synthesized by
swelling the existing network in ethyl acrylate monomers and sparsely crosslinking them. The
resulting EA0.5EAEA material, at a temperature of T = 20◦C, was loaded in cyclic uniaxial tension
while the stress and light emission were measured. Repeat cycles showed negligible light emission
and no change in stress, supporting the essential argument that chains in the network effectively
break both irreversibly and rate-independently. We model the first network as isotropically-swollen,
with the volumetric swelling ratio J = 15.625 known from the experiment. The theory presented
here may be quickly adjusted to account for this swelling: the equilibrium distribution under the
swelling transforms as Peq

A (γ) 7→ Peq
A (J−1/3γ)/J due to the isotropic swelling deformation J1/31,

where the factor of J−1 preserves the total probability. The number density of chains n transforms
under swelling as n 7→ n/J , so if n is known in the pre-swollen configuration, the nondimensional
stress from Eq. (5.80) under swelling is

σ(t) + p(t)1

n/β
=
(
Nb + ςN#

b

)∫∫∫
J−2PA(J−1/3γ; t) η(γ)

(
γγ

γ

)
d3γ. (5.83)

The nondimensional modulus can be shown to be 3J−1/3 for long chains, which is expected for
the isotropic swelling of a network [151]. The first network is modeled as a network of chains of
Nb = 1 irreversibly-breaking links and N#

b unbreakable links. The EA0.5 material was reported
to have a modulus of 0.6 MPa, which corresponds to n/β = 0.2 MPa for the first network. The
second and third networks were over 100 times more sparsely crosslinked than the first, so we treat
them as one effective filler network represented by the Neo-Hookean model, valid when chains are
sufficiently long [125]. Since the EA0.5EAEA material was reported to have a modulus of 1.5 MPa,
we obtain n/β = 0.3 MPa for the filler network. The average number of monomers between
mechanoluminescent crosslinkers in the first network was approximately 34, and the crosslinker itself
offers some additional effective monomers, so we use N#

b = 38. We take βub = 61.57 corresponding
to 150 kJ/mol, the zero-force bond energy of the mechanoluminescent crosslinker [188]. We find
a good fit to the overall mechanical response for κ = 9000, κ# = 6000, and ς = 4, where ς > 1
represents that the bond breaking within the mechanoluminescent crosslinker is short compared to
the monomer backbone length. These large stiffness values and the small effective Kuhn length
resulting from a link representing a single monomer are reasonable, as similar parameters have
been used to fit the EFJC model to AFM experimental results for other acrylate chains [191,
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Figure 5.6: (a) Mechanical response of the triple ethyl acrylate network (EA0.5EAEA) of Ducrot et al. [11] under
cyclic uniaxial tension, and that predicted by the rate-independent irreversibly-breaking model. (b) Light emission
from the sacrificial mechanoluminescent crosslinkers breaking within the first network in the same experiment, and
that predicted by the model.

192]. The critical chain extension γc = 1.17 results from the intact limit of the chain at ηmax =
263.18. The predicted mechanical response of the material under cyclic uniaxial tension is shown
in Fig. 5.6(a) along with the experimental results. We find a good overall agreement between
the prediction of our theory and the mechanical response of the material but find some difficulty
precisely capturing the unloading curve shape, a somewhat common issue when modeling this
material [74, 78, 81, 151]. In addition to the mechanical response, we use our theory to predict the
light intensity measured experimentally as the mechanoluminescent crosslinkers break by assuming
that the intensity is proportional to the rate at which chains break in the first network [74]. The
intensity would then be proportional to − d

dt
P tot

A (t), and we find a good fit for a proportionality
constant of 109 photon·seconds. The theoretical prediction is shown in Fig. 5.6(b) along with the
experimental results, where we observe reasonable agreement but an important shape difference.
Specifically, our theory predicts a more gradual breakdown of the first network than is observed
in the experiment. There are several possible explanations for this discrepancy that we cannot
distinguish among within the current framework. First, it could be due to the polydispersity that is
present within the first network, which has been modeled here as effectively monodisperse. Second,
the assumption that the distribution of chains in the first network swell isotropically as the filler
network is introduced could be invalid for this large degree of swelling. Third, the breaking of
chains in the first network could induce a more complicated damage mechanism that involves the
filler networks [155]. Fourth, the discrepancy could be related to transfer reactions that create
additional crosslinks during synthesis [11].

5.4.2 Transient breaking

When the initial value of the net reaction rate coefficient function k0 ≡ k(0) is appreciable and the
critical extension γc is large enough to be neglected, we obtain a constant reaction rate coefficient
k(γ) = k0 over all chain extensions. This idea is traditionally referred to as the transient network
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model [59, 60]. As shown in Appendix C.4.4, the solution for the distribution of intact chains
PA(γ; t) in this special case simplifies to

PA(γ; t) =

∫ t

−∞
Peq

A

[
(t)F(τ) · γ

]
k0e
−k0(t−τ) dτ. (5.84)

The transient network model has been considered previously in several forms, such as for a Gaussian
distribution of freely-jointed chains [60] or the Neo-Hookean representation retrieved when using
ideal chains [193]. The solution in Eq. (5.84), however, is more general since it is independent
of single-chain model. We would like to emphasize several vital features of this special transient
case. First, we are now limited to the utilization of single-chain models that are infinitely extensible
since we have neglected γc. Here we will simply replace the uFJC model with the EFJC model,
which is infinitely extensible. Second, note that we have taken ρ(t) = 1, meaning that the total
fraction of intact chains P tot

A (t) remains constant at P tot,eq
A for all time, which is true here (see

Appendix C.4.4). The decoupling of single-chain kinetics from chain extension and the constant
fraction of intact chains allows us to write the stress as

σ(t) =

∫ t

−∞
(t)σ(τ) k0e

−k0(t−τ) dτ, (5.85)

where (t)σ(τ) is the stress that the network, if permanent, experiences under the relative deformation

(τ)F(t). Using Eq. (5.76), we write this stress in nondimensional form as

(t)σ(τ) + (t)p(τ)1

n/β
= Nb

∫∫∫
Peq

A

[
(t)F(τ) · γ

]
η(γ)

(
γγ

γ

)
d3γ. (5.86)

This simplification allows us to eliminate considerable computational expense: for a given model,
we may interpolate from tabulated values of (t)F(0) and (t)σ(0) in order to rapidly perform the
integration over the history in Eq. (5.85). In the ideal chain limit (Nb → ∞) we obtain the Neo-
Hookean model [125], where the right-hand side of Eq. (5.86) becomes (τ)F(t) · (τ)F

T (t).
It is common to consider a network that consists of both permanent and transiently-bonded

chains [166]. In this case, with the fraction of permanent chains 0 ≤ xp ≤ 1, Eq. (5.85) becomes

σ(t) = xp (t)σ(0) + (1− xp)
∫ t

−∞
(t)σ(τ) k0e

−k0(t−τ) dτ (5.87)

We apply Eq. (5.87) under the ideal chain limit to the polyvinyl alcohol (PVA) gel with both
permanent and transient crosslinks in Long et al. [167] using k0 = 0.37/s, xp = 16%, and n/β =
24.15 kPa. Two cycles of uniaxial tension at a rate of 0.03/s are applied to the material with
Twait = 30 min between cycles. Since k0Twait � 1, our transient model will fully relax between
cycles and exactly repeat the mechanical response of the first cycle, as observed in experiment. The
results in Fig. 5.7(a) indicate show reasonable overall agreement, but there are discrepancies near
the beginning of the loading and unloading potion of the cycles. These results seem to indicate that
the single-timescale approach of the transient network model is effective at short and long times,
but that many timescales are required to capture the full material behavior. In order to generalize
for many timescales, we can adjust Eq. (5.87) to

σ(t) = xp (t)σ(0) + (1− xp)
∫ t

−∞
(t)σ(τ)

∂g(t− τ)

∂τ
dτ, (5.88)
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Figure 5.7: (a) Mechanical response of the PVA gel in Long et al. [167] under cyclic uniaxial tension at a rate
of 0.03/s, with predictions provided by the transient network model and the model adjusted to use a relaxation
function. (b) Mechanical response of the PVA gel of Mayumi et al. [46] under monotonic uniaxial tension at varying
rates, with predictions provided again by both models.

where g(t) is any relaxation function. Taking g(t) = e−k0t recovers the original transient network
model. We instead utilize a non-exponential relaxation function [167] which in effect represents
many timescales,

g(t) =

[
1 + (α− 1)

t

tR

]1/(1−α)

, (5.89)

where α > 1 and tR is the characteristic bond breaking time. We utilize the parameters reported
by Guo et al. [168] for our adjusted model, which in our case are α = 2.6, tR = 0.6 s, xp = 10%
and n/β = 24.15 kPa. The resulting mechanical response in Fig. 5.7(a) is a near-perfect fit and a
substantial improvement upon the transient model.

The PVA gel we are considering was studied under large deformation and over 4 orders of
magnitude of strain rates by Mayumi et al. [46]. Our parameters change here since this material
system is sensitive to synthesis conditions, often causing mterial parameters to change from batch-
to-batch [167]. These experiments were modeled by Guo et al. [168], from which we obtain the
relaxation function parameters α = 1.99, tR = 3.23 s, xp = 4.68% and n/β = 37.78 kPa. We
utilize Eqs. (5.85) and (5.86) with the EFJC model, fitting Nb = 50 and κ = 40 to the exponential
hardening model used by Guo et al. [168]. For the transient network model we use the same
Nb = 50 and κ = 40, but find xp = 5.85% and k0 = 0.12/s by fitting to the 0.0001/s and 0.1/s
rate results, respectively. The modeling results in each case are shown in Fig. 5.7(b) with the
experimental data. Overall, the adjusted model provides a reasonable prediction of the mechanical
response over all strain rates. We find that the transient network model tends to perform poorly
here at intermediate rates and thus in modeling the mechanical response of more dynamic networks
at intermediate timescales. We attribute this to the insufficiency of the single timescale of the
transient model in capturing the many timescales of the material observed in experiment.
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5.4.3 General behavior

We now examine the behavior of the general model in comparison to the special cases we have just
outlined, rate-independent reversible breaking and transient breaking. The Morse-FJC model is
used in each case with the same parameters, apart from the approximations made to the reaction
rate coefficient function for the special cases. The critical extension γc for both special cases is taken
to be γmax = 1.146, the maximum extension where the chain remains intact. For the version of the
transient model that does not neglect γc, see Appendix C.4.4. Using an exemplary set of parameters,
we apply a series of ramps of rate ε̇ and holds to the deformation gradient, as shown in Fig. 5.8(a) as
a function of the nondimensional time ε̇t. The total probability that a chain is intact, P tot

A (t), under
this deformation is shown in Fig. 5.8(b). While a similar fraction of chains break under the first
loading period for each case, a significant amount of reforming occurs under the following holding
period for the general and transient case, in contrast with the irreversible case where reforming is
neglected. In all cases, the unloading periods in the second half of the deformation history break a
negligible fraction of chains. Overall, the transient case seems to provide a reasonable approximation
of the general case for P tot

A (t) here. The stress in Fig. 5.8(c), however, is substantially different for the
two special cases versus the general case. Due to their neglect of the nontrivial shape of k(γ), either
special case underestimates the fraction of high-extension chains being broken and therefore tends
to overestimate the stress. The reforming process negligibly affects the stress here since chains tend
to reform towards Peq

A (γ), i.e. the stress-free configuration, leading to a surprisingly similar stress
response for the transient and irreversible models. During the holding periods we observe much
more substantial stress relaxation in the general case compared to little in the transient case, which
is again due to k(γ) providing a region where chains break quickly but not instantaneously. This
effect is clearly apparent from examining PA(γ1, 0, 0; t) after the second hold period in Fig. 5.8(d),
where γ1 is the component of γ aligned with the loading direction. Fig. 5.8(d) shows that the
special cases overestimate the fraction of chains at larger extensions and therefore both the stress
and the rate of breaking chains. This higher rate of breaking in the general case provides a higher
rate of reforming, which is why the general case shows the highest probability of chains near γ = 0.

Parametric studies

Next we conduct parametric studies to understand the dependencies of the general model. In each
case we apply one cycle of uniaxial tension with strain rate ε̇ and maximum stretch 9, plotting
the results as a function of the nondimensional time ε̇t. The nondimensional base parameters are
Nb = 1, N#

b = 8, κ = 200, κ# = 500, ς = 1, βub = 100, β∆Ψ0 = 5, and k0/ε̇ = 1/100. First, we vary
the nondimensional initial reaction rate k0/ε̇, or equivalently, the nondimensional strain rate ε̇/k0.
Fig. 5.9(a) shows the nondimensional stress βσ11(t)/n as a function of the nondimensional time ε̇t.
As k0 increases relative to ε̇, we see a decrease in the time it takes for the network to yield as chains
break more rapidly. Increasing k0 also causes broken chains to reform more rapidly, which causes
an increasing amount of compressive stress when fully returning the network to zero strain. This
compressive stress results from chains reforming towards their stress-free equilibrium distribution
while the deformation is still being applied to the network. The rate-independent irreversibly-
breaking special case (k0 = 0) is shown for reference, which still differs considerably from the lowest
k0 case where k0/ε̇ = 10−4. For additional insight, we plot the fraction of intact chains within the
network P tot

A (t) as a function of the nondimensional time ε̇t in Fig. 5.9(b). As k0 increases relative to
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Figure 5.8: (a) The applied deformation F11(t) as a function of nondimensional time ε̇t, where ε̇ is a constant and
the stress is uniaxial tension. (b) The total probability that a chain is intact, P tot

A (t), as function of nondimensional
time for the general model and the two special cases. (c) The applied nondimensional stress βσ11(t)/n as a function
of nondimensional time for the same cases. (d) The distribution of intact chains PA(γ; t) aligned with the loading

direction (along the γ1-axis) at the halfway point t = 8/ε̇. The nondimensional parameters are Nb = 1, N#
b = 8,

κ = 200, κ# = 500, ς = 1, βub = 100, β∆Ψ0 = 5, and k0/ε̇ = 1/100, with γc = γmax = 1.146 for the special cases.

ε̇, we see that chains reform more rapidly and correspondingly, more chains are intact at any time.
When k0 becomes sufficiently large it appears that P tot

A (t) remains approximately constant at its
equilibrium value P tot,eq

A , however, this is not exactly true (see Appendix C.4.4). We see that even
when k0 is quite small compared to ε̇, reforming still takes place after a sufficient amount of chains
are broken. This is because the total reforming rate is proportional to ρ(t) = [1 − P tot

A (t)]/P tot,eq
B ,

which spikes if appreciable amount chains break when P tot,eq
B is small, e.g. here where we have

P tot,eq
B = 6.69× 10−3.

Second, we examine the behavior of the general model while varying the nondimensional stiffness
of the unbreakable links κ# and keeping that of the breakable link constant, κ = 200. Referring back
to the single-chain mechanical response and the reaction rate coefficient function in Fig. 5.5, we recall
that while increasing κ# stiffens the chain near its full extension, it causes the chain to break more
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rapidly and reduces the maximum extensibility due to an increasing amount of strain localization
in the breakable link. Fig. 5.9(c) shows the nondimensional stress βσ11(t)/n, where we see that the
more rapid breaking resulting from increasing κ# is manifested as more rapid yielding of the network.
While larger κ# causes the stress to increase at small deformations, smaller κ# enables much higher
stresses to be reached at large deformations due to increased maximum chain extensibility. The
fraction of intact chains, shown in Fig. 5.9(d), verifies that as κ# increases, chains break more
rapidly as the deformation is applied. Overall, these results illustrate that for a given breakable
bond, maximizing single-chain extensibility may be much more effective than maximizing chain
backbone stiffness when it comes to strengthening networks. These results additionally illustrate
that force-driven breaking of chains within the network is substantially increased after ensuring
that the breakable bond is far less stiff than the rest of the chain. Lastly, we find that for κ# � κ
utilizing the relevant rigid-constraint single-chain model (κ# = ∞, which is the FJC model here)
captures both single-chain results and macroscopic-level results.

Third, we examine the behavior of the general model while varying the number of unbreakable
links N#

b . We keep the number of breakable links Nb = 1 constant, so we effectively vary the chain
length. Our results are independent of whether the number density of chains, n, or number density of
unbreakable links, nN#

b , is kept constant as N#
b increases since we use the nondimensional stress. As

N#
b increases, the nondimensional stress, shown in Fig. 5.9(e), follows a similar trend we observed in

Fig. 5.9(c) when decreasing κ#. Longer chains require less force to have the same end-to-end length
as shorter chains, and additionally the average nondimensional end-to-end length at equilibrium
decreases as chains become longer [50, 125]. Combined, these two effects allow a network of longer
chains to deform more without breaking down and thus reach higher nondimensional stresses without
yielding. This is verified by examining the fraction of intact chains, shown in Fig. 5.9(f), where we
see less overall breaking as chains become longer. The results in the ideal chain limit (N#

b = ∞)
are also shown in both Figs. 5.9(e) and 5.9(f), and are equivalent to the results obtained when
using the Neo-Hookean model [125]. As N#

b increases, the results of the general model matches the
Neo-Hookean model for an increasing amount of time, but continued deformation of the network
always causes the two to diverge as the finite-length chains in the general model stiffen and begin
to break.

Fourth, we examine the behavior of the general model while varying the nondimensional break-
able link energy βub. Referring back to the single-chain mechanical response in Fig. 5.3(b), we
recall that increasing βub caused the maximum nondimensional force that a chain could support,
ηmax ≡

√
κβub/8, to increase. We also recall that the overall mechanical response away from ηmax

and the reaction rate coefficient function tended not to change when varying βub. Fig. 5.10(a) shows
the nondimensional stress βσ11(t)/n as a function of the nondimensional time ε̇t. As βub increases,
the shape of the curve remains relatively unchanged while the overall stress level increases due to
increasing ηmax. The fraction of intact chains within the network P tot

A (t) as a function of the nondi-
mensional time ε̇t is shown in Fig. 5.10(b). From P tot

A (t) we see that the breakdown of the network
is only mildly lessened by increasing βub, which can be further understood after reconsidering the
mechanical response in Fig. 5.3(b) and observing that the maximum extensibility γmax also only
mildly increases with βub. While these results show that the network is strengthened by increasing
the energy of the breakable bond, it is unlikely that this energy would be controllable in the range of
many factors of bT = 1/β. Correspondingly, the mechanics of the network are relatively insensitive
to the breakable bond energy.
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Figure 5.9: Parametric studies concerning rates and the unbreakable links, where we vary (a,b) k0/ε̇, the nondi-

mensional initial reaction rate, (c,d) κ#, the nondimensional stiffness of the unbreakable links, and (e,f) N#
b , the

number of unbreakable links, while keeping the number of breakable links, Nb = 1, constant. For one cycle of uniaxial
monotonic tension, the nondimensional stress, βσ11(t)/n, and total probability that a chain is intact, P tot

A (t), are
plotted as a function of the nondimensional time ε̇t.
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Figure 5.10: Parametric studies concerning the breakable link(s), where we vary (a,b) βub, the nondimensional
breakable link energy, (c,d) β∆Ψ0, the net Helmholtz free energy change when breaking a chain, and (e,f) Nb, the

number of breakable links, while keeping the total number of links, Nb +N#
b = 9, constant. For one cycle of uniaxial

monotonic tension, the nondimensional stress, βσ11(t)/n, and total probability that a chain is intact, P tot
A (t), are

plotted as a function of the nondimensional time ε̇t.
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Fifth, we examine the behavior of the general model while varying β∆Ψ0, the net Helmholtz
free energy change when breaking a chain. This parameter directly controls the total probability at
equilibrium that a chain is intact, P tot,eq

A , or broken, P tot,eq
B = 1−P tot,eq

A , via Eq. (5.70). Fig. 5.10(c)
shows the nondimensional stress, where we see that increasing β∆Ψ0 decreases the initial modulus
(roughly 3nP tot,eq

A /β) as well as the overall stress. Both trends are almost entirely due to decreasing
P tot,eq

A : when scaling the nondimensional stress by P tot,eq
A , the curves collapse on one another (not

shown). Although it is not observed in the stress, β∆Ψ0 also has a strong effect on the rate of
reforming. The net reverse reaction rate coefficient function, k(γ)Peq

A (γ)/P tot,eq
B , multiplies P tot

B (t)
in Eq. (5.74). The rate of breaking relative to reforming is then Peq

A (γ)/P tot,eq
B , which becomes

large as β∆Ψ0 increases. The stress is mostly unaffected by the rate of reforming since chains
reform towards the equilibrium distribution Peq

A (γ) where they tend not to contribute to the overall
stress. Importantly, this reforming towards the stress-free equilibrium distribution does not appear
to provide any appreciable stress reduction, although more rapid reforming does cause an increasing
amount of compression when the strain is returned to zero. The fraction of intact chains, shown in
Fig. 5.10(d), allows us to better examine the effects of the rate of reforming broken chains. As β∆Ψ0

increases, more rapid reforming prevents a large percentage of broken chains to be reached at any
time, and the equilibrium value (which also increases) is more quickly recovered after the loading
portion. When β∆Ψ0 is sufficiently large, the reforming of broken chains becomes so rapid that
P tot

A (t) appears to remain constant at its equilibrium value. This result might lead one to believe
that for β∆Ψ0 � 1, ρ(t) = P tot

B (t)/P tot,eq
B could be approximated as ρ(t) ∼ 1 within the solution

for PA(γ; t) in Eq. (5.75), thus avoiding computing the solution for ρ(t) in Appendix C.4. Such
an approximation fails entirely: ρ(t) spikes and decays rapidly as chains break and are immediately
reformed, playing a crucial role in the solution for PA(γ; t). Taking ρ(t) ∼ 1 then retrieves entirely
different results where reforming is vastly under-predicted and P tot

A (t) does not actually remain
constant (not shown). This is unfortunate, because cases where β∆Ψ0 � 1 tend to be the most
computationally expensive and represent the cases where chains require considerable force to break
but reform quickly afterward.

Sixth and lastly, we examine the behavior of the general model while varying the number of
breakable links Nb. We keep the total number of links Nb + N#

b = 9 constant, so the chain length

remains constant and the number of unbreakable links N#
b varies accordingly. In effect, this varying

Nb while keeping Nb + N#
b constant varies the fraction of the chain that is breakable. The stress

in Fig. 5.10(e) decreases mildly as Nb increases while retaining the same overall shape. This stress
decrease is mostly due to chains breaking more quickly as Nb increases since the net reaction rate
coefficient function is still k(γ) = Nbk

′(γ) scales directly with Nb. It is also due to the equilibrium
fraction of intact chains P tot,eq

A decreasing as Nb increases, i.e. Eq. (5.70). This is directly observed
in Fig. 5.10(f), where the evolution of the fraction of intact chains in the network, P tot

A (t), is shown.
As Nb increases, chains break more rapidly and allow a larger fraction of chains to be broken overall.
The total rate of reforming seems to increase with Nb, but this is simply due to more chains being
broken, driving faster reforming due to the system being further out of equilibrium. Our results
here verify that including more breakable bonds within a chain of a fixed contour length causes
substantially increased bond breaking under a given deformation.
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General model application

Now that our parametric study is finished, we apply the general model to a material system from the
literature with force-sensitive reversible crosslinks. A tough, self-recovering hydrogel was synthesized
by Zheng et al. [194] using metal-coordination complexes as reversible crosslinks. This system was
modeled by Lin et al. [165], where the crosslink breaking rate was taken to increase as the network
experienced more stress to account for force-sensitive breaking. We obtain parameters for our
model as follows. The hydrogel was synthesized with 10% mole fraction of crosslinking monomers,
so when taking Nb = 1 we obtain N#

b = 9 after taking each link to represent a monomer. We obtain
n/β = 0.48 MPa from half of the reported shear modulus, 0.96 MPa. We take k0 = 2 × 10−4/s
from the force-free rate of breaking obtained for the model of Lin et al. [165], and similarly take
β∆Ψ0 = 8.55 in order to match total reforming rate of the model, K̂ = 1/s. Otherwise, we find
ς = 1, βub = 100, κ = 200, and κ# = 400 provides the best fit. The stress as a function of
applied stretch is shown in Fig. 5.11 for one cycle of uniaxial monotonic tension, where different
tests are performed to different maximum stretches. For the first test (to a stretch of 2.5), we
find that our model accurately predicts the loading curve from the experiment but upon unloading
overpredicts the recovery and thus underpredicts the dissipation. For the second test (to a stretch
of 4), the model begins to better predict the growing amount of dissipation, but still overpredicts
the recovery and begins to yield. For the third test (to a stretch of 5.5), the model continues to
yield and deviates strongly from the experimental loading curve. Overall, since our model cannot
create large amounts of dissipation without significantly breaking down the network, it is unable
to capture the mechanical response observed in experiment due to the accompanying significant
yielding. We attribute this to our model not accounting for the viscous deformation resulting from
broken portions of the network freely flowing before reforming. This was not encountered earlier
in Sec. 5.4.1 when modeling the multinetwork elastomer since the secondary networks provided
integrity while the sacrificial network broke down. This viscous flow was included in the model of
Lin et al. [165] and allowed it to make more accurate predictions. Here, the viscous flow would
allow for increased dissipation without requiring the significant network breakdown that creates
artificial yielding, and additionally would reduce the predicted amount of recovery.

5.5 Conclusion

We have accomplished a fundamental derivation leading to a constitutive model for the stress-strain
behavior of elastomers with chain breaking that properly incorporates the statistical mechanics
of a general single-chain model. We have shown that the single-chain mechanical response, the
breaking and reforming kinetics, and the equilibrium distribution of chains in the network are all
inextricably determined by the single-chain model Hamiltonian. Our meticulous formulation was
seamlessly brought to the continuum scale, where we obtained the Cauchy stress entirely in terms
of the applied deformation, the temperature, the network chain density, and the single-chain model.
We showed that the second law of thermodynamics was automatically arbitrarily satisfied as a
consequence of our statistical mechanical treatment. We introduced, developed, and studied the
potential-supplemented freely jointed chain (uFJC) model. We then accomplished a valuable exact
solution for the evolving distribution of chains in the network, applicable beyond the uFJC model.

Next, we developed two special cases of our constitutive model and applied them to exem-
plary polymer materials from the literature. In the case of the multinetwork elastomer, the rate-
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Figure 5.11: Stress as a function of stretch for one cycle of uniaxial monotonic tension, repeated for different
maximum stretches. The experimental results for the metal-coordinated gel of Lin et al. [165] are shown with those
predicted by the general model.

independent irreversible theory was mostly successful in modeling both the mechanical response of
the material and the breakdown of the sacrificial network. In the case of the dual crosslink gel, the
single timescale of the transient network model was mostly unable to capture the rate-dependent
mechanical response of the material. We then examined the behavior of our constitutive model in
the general case, where we contrasted it with the two special cases and performed several parametric
studies to highlight how material performance could be tuned. Afterward we applied the general
model to a hydrogel with force-sensitive reversible metal-coordinated crosslinks, where we found
that the model was unable to capture the toughness of the material without artificially yielding.
Overall, we observed the following: while chain breaking is a dominant feature in the large defor-
mation of many elastomeric systems, related phenomena often become similarly important as the
network breaks down, limiting the success of our current approach. For example, breaking bonds
could increase the effective contour length of chains rather than simply reduce the amount of intact
chains, similar to network alteration theory [195, 196]. This idea is supported by a recent molecular
dynamics study, which determined that network breakdown in the same multinetwork elastomer
we considered here was strongly tied to the evolving shortest contour length between crosslinks
[197]. Another example: significant network breakdown – especially in the case of a single net-
work material – seems to be accompanied by additional viscous flow not included in our model
[165]. Nonetheless, our existing theory provides a strong foundation to build upon and include
additional physical mechanisms. The presented approach is a robust method to obtain macroscopic
constitutive functions in terms of molecular functions and parameters.
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Chapter 6

Conclusions and future outlook

This dissertation focused primarily on developing continuum constitutive models for elastomeric ma-
terials starting from the statistical mechanics of single polymer chains. These physically-founded
models were developed to capture the large-deformation mechanical behavior of an emerging set of
materials which contain polymer networks that are designed to benefit from bond breaking. The
successful development and application of a general model framework for these materials consti-
tute the most substantial advances made by this dissertation. Additional advances made by this
dissertation were: a study of the important connections in the single-chain statistical mechanical
description; a combined experimental and theoretical study of a metallopolymer using density func-
tional theory calculations and experimental mechanical tests; the development of an asymptotic
theory for the statistical thermodynamics of classical systems with stiff potentials, or equivalently,
systems at sufficiently low temperatures.

In Chapter 2, density functional theory (DFT) was combined with experimental mechanical
tests to investigate how the mechanical properties of a metallopolymer may be tuned using metal-
ligand interactions at the crosslinks. A DFT calculation regimen was established, beginning with a
geometry optimization and subsequent frequency analysis to obtain and verify the molecular struc-
ture of the crosslink. External forces were applied incrementally, the crosslink was re-optimized,
and the extension was measured to obtain the mechanical response of the crosslink. Once the
maximum force was reached, the dissociated structure was used as a guess to obtain and verify
the broken crosslink structure. Equipped with the two ends of the breaking/reforming pathway,
the transition state separating them was determined and was subsequently verified. The forward
free energy barriers to breaking the crosslink were then calculated, along with the net free energy
change when breaking. This calculation regimen obtained the mechanical response and breaking/re-
forming thermodynamics of the crosslinks, and was repeated while varying the number and type
of ligands. It was determined that increasing numbers of bound ligands did mechanically weaken
the crosslinks and reduce the thermodynamic barrier to breaking, which was borne out in mechan-
ical experiments on the bulk materials. A separate binding energy analysis was also established,
allowing the equilibrium populations of different numbers of bound ligands to be calculated as a
function of the total ligands per metal center. These population calculations predicted a saturation
of bound ligands that was also borne out in mechanical experiments. While these set of calculations
provided direct insight when varying the number of ligands, it provided incomplete insight when
varying the type of ligands. Specifically, the calculations predicted negligible effects when varying
the ligand type, whereas mechanical experiments showed significant differences. These differences
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were then attributed to varying ligand-environment interactions, which were not considered by the
calculations, so this was only qualitatively explained. Correspondingly, future work should con-
sider repeating the DFT calculation regimen with the crosslink in an explicit polymer environment.
While this would be a considerable computational task, it would allow quantification of important
variables like the average rate of reforming crosslinks as the ligand type changes. This could pos-
sibly be done using ab initio molecular dynamics (AIMD), Born-Oppenheimer molecular dynamics
(BOMD), or hybrid quantum mechanics/molecular mechanics (QM/MM) in Q-Chem [120]. Other
methods in other software packages could be useful, for example using DFT to train the reactive
force field method ReaxFF [198]. More importantly than additional simulation, a continuum con-
stitutive model is necessary to complete the investigation of this material system. Ideally, this
model would include parameters and functions from the DFT analyses and capture the mechanical
response of the material observed in experiment, allowing the conclusions from this work to be
directly probed.

In Chapter 3, a large deformation constitutive model for polymer networks was developed from
fundamental statistical mechanical principles. This work highlighted the inextricable connection
between single-chain mechanical behavior and the equilibrium distribution of chains in the network,
in addition to the correspondence between different single-chain thermodynamic ensembles. Using
the extensible freely-jointed chain (EFJC) model, the effects of these distinctions were studied at
both the molecular and continuum scale. Two popular approximation methods were considered
along with the exact method, producing different results in general until the number of links in the
chains became sufficiently large. When chains are considered to be infinitely long, the constitutive
model in any case becomes the Neo-Hookean model. Notably, this work contributes a mechanistic
hyperelastic constitutive model that is directly applicable to the large deformation mechanical
response of elastomers. Other single-chain models could be applied in the framework, such as an
extensible freely-rotating chain (EFRC) model. The performance trends of the two approximation
methods would likely remain the same, but the obtained constitutive model could behave differently.
More beneficial would be for future work to reconsider and study the results of the affine assumption.
Non-affine formulations are important for polydisperse networks [75, 78, 80] and typically consist of
the microsphere and maximal path constraint methods [68, 79]. These non-affine formulations have
not yet been applied to distributions with varying end-to-end length, which would be necessary
here. Most desirable would be the establishment of a statistical mechanical basis for connecting
the macroscopic deformation to the evolution of the distribution of chain end-to-end vectors, but
this is perhaps fundamentally inconsistent due to the noninteracting chains approximation. This
approximation could also be reconsidered, perhaps utilizing the high-temperature perturbation
theory of Zwanzig [138] to obtain approximations for the weak interactions between polymer chains
in an elastomer. Such an approach would avoid computational intractability by still allowing the
constitutive model to be formulated using single-chain models.

In Chapter 4, an asymptotic theory was developed for the statistical thermodynamics of classical
systems with potential energies of interaction that are strong compared to available thermal energy.
This theory acts as the low-temperature analog of the high-temperature theory of Zwanzig [138],
adding a new tool to the sparse list of existing tools available for general systems [141]. The full sys-
tem partition function was asymptotically approximated using the reference system (the full system
with strong potentials replaced by athermal rigid constraints) and corrections related to the shape
of the strong potentials at their minima. This lead to an asymptotically-correct approximation for
the Helmholtz free energy. At leading order the theory retrieved the classical rigid-rotor-harmonic
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oscillator approximation, where higher order approximations were then systematically-retrieved cor-
rections related to anharmonicity and rotation-vibration coupling. This theory can be applied to
other thermodynamic ensembles, such as the ensemble for isotensional molecular stretching experi-
ments, but there are additional complications related to the force-dependent total potential energy
minimum. These complications are surmountable, and future work will consider applying the the-
ory to the stretching of single polymer chains. Simulations and exact solutions, when available, will
be compared to theoretical asymptotic approximations of the single-chain mechanical response as
the stiff bond potential parameters are varied. Future work will also consider applying the theory
to general simulation, such as using it to improve upon numerical simulations incorporating rigid
constraints, and will analyze the most general case where stiff degrees of freedom interact. Lastly,
it should be possible to improve upon several past high-temperature approximations for fluids [139,
140]. This would be done by replacing the hard-sphere approximation for the repulsive part of
the Lenard-Jones potential with an asymptotic treatment via this theory, in effect combining the
low-temperature and high-temperature theories in a single composite approximation.

In Chapter 5, another statistical mechanical constitutive model for polymer networks was devel-
oped, this time including bond breaking and potential reforming. Classical transition state theory
was extended to consider a continuous probability distribution of polymer chain end-to-end vectors.
The mechanically-sensitive breaking rates were derived exactly using this extended transition state
theory, and were shown to be connected to the single-chain mechanical response and equilibrium
distribution of chains in the network. A thermodynamically-consistent Helmholtz free energy was
then formulated for the network and utilized to develop the macroscopic constitutive theory, where
the Cauchy stress was retrieved and the second law of thermodynamics was shown to be automat-
ically arbitrarily satisfied. After specifying the external inputs and parameters (the deformation
history, the temperature, and the number density of chains), the resulting constitutive framework
requires only the single-chain Hamiltonian, i.e. the single-chain model. To demonstrate the model
and apply it to relevant materials, the uFJC model was presented and developed, which is the
freely-jointed chain (FJC) with stiff but flexible links with potential energy u. An asymptotic anal-
ysis obtained the single-chain mechanical response, which was then pushed through the framework
in order to obtain each of the other single-chain statistical mechanical functions. The Morse poten-
tial was utilized specifically for u, and both the single-chain mechanical response and reaction rate
coefficient function were studied across a range of molecular parameters. An original exact solution
to the integro-partial differential equation governing the evolution of the network was presented;
it is possible that this equation and its solution is applicable beyond this specific system. This
exact solution was specialized for two cases: rate-independent irreversible breaking, and transient
breaking. The first specialization is applied to the cyclic deformation of a mechanoluminescent
multinetwork elastomer [11], where the model is almost entirely informed by the chemistry and
provides excellent results. The second specialization, the transient network model [59, 60], was
applied to the cyclic [167] and multi-rate [46] deformation of a poly-vinyl alcohol gel. The tran-
sient network model performed poorly at intermediate rates, and replacing the single exponential
(single linear timescale) with a nonlinear relaxation function [168] showed that the model needed
to consider many effective timescales in order to become accurate. The general model was then
compared to both specializations, and parameter study valuable for design purposes was carried
out across a range of different molecular parameters. The general theory was then applied to a
polymer with force-sensitive reversible crosslinks [194], where the inaccuracy of the model over
different cyclic stretches showed that viscous dissipation mechanisms were likely responsible for



86 Chapter 6. Conclusions and future outlook

much of the toughness exhibited by the material, instead of just bonds breaking and reforming.
In Appendix C.5.2, the general theory was adjusted to account for chains remaining intact after a
breaking reaction in order to model force-mediated molecular release in a hydrogel [199]. A similar
adjustment could be made in order to model chain-lengthening reactions [13–15] that are now being
utilized to toughen polymers [16]. This and other applications could require the consideration of
non-equivalent reaction pathways within each chain, so an exact solution in that case – i.e. to the
system of integro-differential equations in Eq. (C.133) – would be desired but is not yet known.
More critically, future should could reconsider the four most fundamental assumptions made when
constructing the general theory: the affine assumption, the noninteracting chains approximation,
the transition state theory approximation, and the simple behavior of broken chains. The first
two were discussed previously as they also pertain to the permanent network model in Chapter 3.
Transition state theory approximates that the timescale of reaction is long, where the two regions
of the phase space corresponding to each chemical species are distinct and reach a local thermody-
namic equilibrium very fast [173]. Such an approximation is not always valid, for example: highly
dynamic bonds could break and reform fast enough to near chain relaxation dynamics timescales.
This was exhibited by the transient network model performing poorly in capturing the mechanical
response of a highly dynamic network over many strain rates. Future work would then perform
another derivation without the transition state theory assumption, seeking to provide a substantial
improvement upon the transient network model. The fourth fundamental assumption was that the
ends of broken chains do not interact until reforming and are then insensitive to extension. This
assumption then caused the distribution of broken chains to be flat, unaffected by the deformation,
and reform directly toward the intact equilibrium distribution. While this result is consistent with
the existing literature [59, 60, 160, 161, 175], it may not be representative of the true physics and is
likely creating model features that are not observed in experiment. For example, the scaled stress of
the model can be nearly independent of the rate of reforming, and will always yield at some stretch
though ∼100% of the chains may remain intact. Future work should reconsider the behavior of bro-
ken chains and how they reform in order to alleviate these non-intuitive features, which should aid
in modeling force-sensitive reversible breaking in polymer networks. This could also involve viscous
mechanisms related to chain slip accounting for much of the dissipation observed in cyclic stress ex-
periments [165], as well as more complicated network evolution like network alteration theory [195,
196]. Finally, it would be beneficial for future work to develop expedient numerical methods that
would make this model more suitable for finite element analyses. While the current implementation
[149] is robust, accurate, and relatively efficient, it can often require large amounts of memory and
time to complete a computation where doing so over many elements would immediately become
impractical.
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Supporting Information for Chapter 2

A.1 General

Unless otherwise noted, solvents and reagents were purchased and used without further purification.
Nickel(II) acetate tetra hydrate, imidazole, 2-methyimidazole, and dimethylamine 2M in THF were
purchased from Oakwood Chemical. Piperidine, pyridine, 2-carboxyethyl acrylate, Diphenyl(2,4,6-
trimethylbenzoyl)phosphine oxide, and 2-Hydroxy-2-methylpropiophenone were purchased from
Millipore-Sigma. 2-Hydroxyethyl acrylate was purchased from TCI America. SylgardTM 184 was
purchased from Electron Microscopy Sciences. Infrared (IR) spectra were recorded in the range of
600–4000 cm−1 with 8 cm−1 resolution on a Bruker Vertex V80V Vacuum FTIR system in ATR
mode under vacuum.

A.2 Polymer synthesis

A.2.1 Preparation of the acrylic formulation with Ni2+ crosslinker

A solution of nickel acetate tetra hydrate (34.9 gr, 140 mmol) in methanol (200 ml) was added to
a mixture of 2-hydroxyethyl acrylate (246.7 gr, 2.124 mol) and 2-carboxyethyl acrylate (40.4 gr,
280 mmol). The acetic acid was distilled out under reduced pressure (50 mm Hg) at 65 ◦C. The
formulation was stored in the dark at 4 ◦C and was used for the preparation of all the nickel
crosslinked materials.

A.2.2 General procedure for neutral ligand attachment

The appropriate ligand in the indicated number of equivalents was added slowly to the Ni2+ acrylic
formulation at 0 ◦C while stirring. The modified nickel formulation was cured according to the
general UV curing procedure and was tested 24 hours after preparation.

A.2.3 General procedure for UV free radical polymerization

Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (0.005 eq for every acrylic group) and 2-hydroxy-
2- methylpropiophenone (0.017 eq for every acrylic group) were added to the acrylic formulation.
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Figure A.1: Polymerization setup; dog-bone silicone mold pressed between two laminated glass plates.

The UV curable formulation was transferred to a dog-bone shaped silicone mold (Fig. A.1) pressed
between two glass plates laminated with scotch tape (to prevent adhesion of the cured polymer
to the glass). The formulation was cured by 365 nm UV light irradiation generated by two lamps
(6 Watt 365 nm, VWR) for 45 minutes.

A.2.4 Preparation of the linear polymer
poly(2-hydroxyethyl acrylate-co-2-carboxyethyl acrylate)

A mixture of 2-hydroxyethyl acrylate (6.15 gr, 53.0 mmol) and 2-carboxyethyl acrylate (1.01 gr,
7.0 mmol) was pretreated under reduced pressure (50 mm Hg) at 65 ◦C to mimic the same prepa-
ration conditions as the nickel crosslinked materials. The formulation was cured according to the
general UV curing procedure and was tested 24 hours after preparation.

A.2.5 Preparation of the linear polymer poly(2-hydroxyethyl acrylate)
with dispersion of Ni(OAc)2(H2O)4

A solution of nickel acetate tetra hydrate (1.40 gr, 5.6 mmol) in methanol (10 ml) was added to
2-hydroxyethyl acrylate (9.87 gr, 85 mmol). The methanol was removed under reduced pressure
(50 mm Hg) at 65 ◦C. The formulation was cured according to the general UV curing procedure
and was tested 24 hours after preparation.

A.2.6 Preparation of the linear polymer poly(2-hydroxyethyl acrylate)

2-hydroxyethyl acrylate (9.87 gr, 85 mmol) was pretreated under reduced pressure (50 mm Hg) at
65 ◦C to mimic the same preparation conditions as the nickel crosslinked materials. The formulation
was cured according to the general UV curing procedure and was tested 24 hours after preparation.
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A.3 Dog-bone mold preparation

First, an acrylic mold was prepared. Five dog-bones (Fig. A.2) matching the desire final specimen
shape were laser cut from 1.5 mm thick PMMA panel. The acrylic dog-bones were solvent welded
to an acrylic plate with 5.5 mm separation between dog-bones in the acrylic mold. A silicone mold
was then prepared by casting two parts PDMS resin (SYLGARDTM 184) onto the acrylic mold.
The resin was cured for 48 hours at room temperature and an additional 5 hours at 70 ◦C. The
silicone molds were sprayed with EASE RELEASETM 200 (Smooth On Inc.) before each use.

Figure A.2: Dog-bone dimensions in mm.

A.4 Tensile Test Methods

Tensile tests were performed on a Zwick-Roell Z010 system with a 500 N capacity load cell (X-
Force HP, Zwick-Roell). Constant strain rate, cyclic, and stress relaxation tests were performed
with displacement control using engineering strain rates and assuming an effective gage length of
28.00 mm. Both the cyclic and stress relaxation tests were conducted at an engineering strain
rate of 0.114/s. For the cyclic test, the change in crosshead direction is specified by displacement
when loaded and by force (0.1 N) when unloaded. Stress and strain were calculated from force and
extension recorded during tensile tests. Engineering strain is given by εeng = ∆L/L0, where L0 is
the initial gage length obtained by linear finite element simulation of the tensile specimen geometry.
Engineering stress is given by σeng = F/A0 where F is the recorded force and A0 is the original
specimen cross-sectional area. Elastic moduli were determined by a linear fit to the stress-strain
curve over the initial linear region. Yield stresses were determined by determining the point on the
stress strain curve directly below the point of intersection between the line tangent to the initial
linear region and the line tangent to the linear region immediately following the yield peak.
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A.5 Glass Transition Temperature Determination

Glass transition temperatures (Tg) of the samples were measured by Dynamic Mechanical Analysis
(DMA) Q800 (TA Instruments) with a film tension clamp under nitrogen atmosphere. The preload
force was 0.01 N, and an oscillation strain 0.1% was performed on the sample with a frequency of
1 Hz. The sample was equilibrated at −30 ◦C for 2 min and then heated up to 150 ◦C with speed
3 ◦C/min.

(a) (b)

(c) (d)

Figure A.3: Storage and loss modulus (left; a,c) and tan δ (right; b,d) for Linear (top; a,b) and Ni (bottom; c,d).



A.6. Theoretical backbone stiffness 91

A.6 Theoretical backbone stiffness

The backbone stiffness between crosslinks was estimated by performing a molecular dynamics (MD)
simulation of seven repeat units of poly(2-hydroxyethyl acrylate). All simulations were performed
using the large-scale atomic/molecular massively parallel simulator (LAMMPS) [200] on the Extreme
Science and Engineering Discovery Environment (XSEDE) Stampede2 cluster [124]. A CVFF force
field was used to define the interactions between the atoms in the polymer chain [201]. The chain
was first equilibrated using Langevin dynamics for 0.1 ns (with a time step of 1.0 fs) at 500 K in
the NV E ensemble and 0.1 ns (with a time step of 0.5 fs) at 500 K and atmospheric pressure in the
NpT ensemble. This was followed by cooling the system at a constant rate from 500 K to 300 K
over 0.25 ns (with a time step of 0.5 fs) in the NpT ensemble, followed by a 1.0 ns simulation (with
a timestep of 0.5 fs) at 300 K and atmospheric pressure in the NpT ensemble. The polymer chain
was then deformed for 1.0 ns (with a time step of 1.0 fs) in the NV E ensemble by fixing the carbon
at one end of the chain and pulling on the carbon at the other end of the chain along the radial
vector between them at a controlled force rate of 20.8 nN/ns. Langevin dynamics were used during
the pulling step to maintain the temperature at 300 K.

Figure A.4: Theoretically (MD) obtained mechanical response in the average length of backbone between crosslinks
from which the initial stiffnesses is approximately 0.4 nN/Å and the maximum tangent stiffness is approximately
2.4 nN/Å.
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A.7 Cyclic stress-strain response compared to

monotonic loading

(a) (b)

Figure A.5: Cyclic and monotonic response for (a) Ni and (b) Ni-2Im.

A.8 Computational details

All calculations were carried out using the Extreme Science and Engineering Discovery Environ-
ment (XSEDE) Stampede2 cluster [124] and the U.S. Department of Defense High Performance
Computing Modernization Program (HPCMP) Mustang and Centennial clusters.

A.8.1 Geometry optimizations of the model systems

All calculations were performed with the Q-Chem software package (v5.1 development version) [120]
using the ωB97X-V density functional approximation [121] and the def2-TZVPP basis set [122]. All
SCF calculations were converged with a tight DIIS convergence threshold (SCF CONVERGENCE = 9,
corresponding to 10−9) and integral threshold of (THRESH = 14, corresponding to 10−14) unless
otherwise noted. Symmetry was ignored during all calculations (SYMMETRY = FALSE, SYM IGNORE

= TRUE), and the force, displacement, and energy convergence criteria were set to minimum val-
ues (GEOM OPT TOL GRADIENT = 1, GEOM OPT TOL DISPLACEMENT = 1, GEOM OPT TOL ENERGY = 1).
Various nickel-ligand conformations and ligand rotations were sampled as starting points for ge-
ometry optimizations to ensure convergence to the global energy minimum of each nickel crosslink
structure. In addition, numerous starting points for the second coordination sphere molecules were
sampled (when appropriate) to obtain the lowest energy configurations. All calculations treated the
electronic wavefunction as a high-spin triplet; for all imidazole containing compounds, we computed
the corresponding singlet-triplet gaps to confirm a triplet ground state. During all calculations, the
spin contamination of the wavefunction was minimal with 〈S2〉 values ranging from 2.0029 to 2.0043.
Subsequent harmonic vibrational frequency analyses (using a numerical finite-difference scheme with
FDIFF STEPSIZE = 100) were performed to confirm that all optimized geometries were minima with
no imaginary frequencies.
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A.8.2 Applying external forces to the crosslink

The mechanical responses of the structures were then investigated by applying equal and opposite
forces at the outer methyl carbon atoms using the External Force Explicitly Included (EFEI) algo-
rithm [107]. The external force was incrementally increased in steps of 0.1 nN, and the geometry
was re-optimized (as described above) until one of the nickel-carboxylate bonds ruptures and the
complex dissociates from the applied forces. This rupturing event was defined as a failure in the
geometry optimization procedure to converge after a total of 750 iterations.

A.8.3 Free energy barriers

The dissociated structures from the EFEI algorithm (i.e., the geometries at the point of rupture)
were taken as starting points in subsequent force-free geometry optimizations to obtain the opti-
mized configurations for each ruptured crosslink (as described above). To compute the correspond-
ing free-energy barriers, the frozen string method (FSM) [202, 203] was employed to compute an
approximate reaction pathway connecting the (force-free) optimized intact and ruptured structures.
Subsequent transition state (TS) searches were performed on the maximum-energy configurations
from the FSM pathways using the same force, displacement, and energy convergence criteria as
above, and a maximum allowed step size of 0.05 (GEOM OPT DMAX = 50). Depending on the diffi-
culty associated with finding the final TS, FSM calculations used 20-55 nodes and 6-20 orthogonal
gradients. All TS structures were verified to have a single imaginary frequency (which connected the
corresponding reactant and product) using the numerical Hessian procedure described above. Ther-
mal contributions to the free energy were computed at a temperature of 298.15 K and a pressure of
1 atm using partition functions derived from the standard ideal gas (IG) and rigid rotor-harmonic
oscillator (RRHO) approximations.

A.8.4 Consecutive ligand binding energies

The geometries used for computing consecutive binding free energies were optimized according to the
procedure described above, based on starting configurations generated by systematically replacing
each of the four water molecules initially bound to the nickel center with an imidazole ligand (see
Fig. A.6). The replaced water molecules were taken to be infinitely separated from the complex
(and not included in the second coordination sphere), which is needed to maintain size consistency
in the binding free energies. Binding free energies for the consecutive addition of n ligands were
then computed according to:

∆Gbind[n] = (G [Ni(OAc)2Ln(H2O)4−n])−
(
G
[
Ni(OAc)2Ln−1(H2O)4−(n−1)

]
+G[L]

)
, (A.1)

where G[X] is the free energy of the X species, and n = 1, 2, 3, 4 is the number of coordinating
ligands (L). The results are reported in Table A.1 for the imidazole (Im), methylimidazole (MeIm),
pyridine (Py), piperidine (Pipe), and dimethylamine (DMA) ligands.

A.8.5 Population analysis

To determine the number of imidazole ligands (Im) bound to each Ni center at equilibrium, we con-
sidered a finite system consisting of N metal centers (representing a polymer with N non-interacting
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Figure A.6: Illustration of the procedure used to calculate the theoretical binding free energies for the consecutive
addition of n = 1, 2, 3, 4 imidazole ligands.

nickel-carboxylate crosslinks). Each of these metal centers was taken to have the following molecu-
lar formula, Ni(OAc)2Ln(H2O)4−n, and was allowed to reside in one of five states, ranging from no
bound Im ligands (n = 0) to four bound Im ligands (n = 4). The corresponding free energies of each
state (relative to the n = 0 state for which ∆G[0] was set to 0.0 kcal/mol) were taken as the sum
of the consecutive binding free energies in Table A.1, i.e., ∆G[n] =

∑
k ∆Gbind[k] for 1 ≤ k ≤ n.

With these ∆G[n] values in hand, we enumerated all possible energy levels for a system containing
N metal centers, ranging from all metal centers in the n = 0 state to all metal centers in the n = 4
state. Enumerating energy levels (instead of explicitly enumerating system states) enables us to
simulate larger system sizes by dramatically decreasing the computational effort associated with the
enumeration. To construct Fig. 2.4(a) in the manuscript, we considered m = 0 to 5 equivalents of
Im (in increments of 0.125). For a given m, we selected all of the enumerated levels which contain
less than mN Im ligands for the analysis described below. Here we note that each energy level
corresponds to all of the system states within the same permutation group. In other words, the
degeneracy of each energy level arises from the permutational symmetry of the system, in which one
can swap the states of any two Ni centers without changing the total system energy. To calculate
the degeneracy of the jth energy level, gi, we compute the number of distinct permutations via

gj =
N !

Nj,0!Nj,1!Nj,2!Nj,3!Nj,4!
, (A.2)

in which Nj,n denotes the number of Ni centers bound to n Im ligands. It follows that the probability
of occupying the jth energy level, Pj, is given by:

Pj =
gj e

−β∆Gj

Q
, (A.3)

Table A.1: Theoretical binding free energies (in kcal/mol) for the consecutive addition of a given
ligand to the nickel center.

Ligand ∆Gbind[1] ∆Gbind[2] ∆Gbind[3] ∆Gbind[4]

Im −4.60 −8.34 −0.80 0.53

MeIm −5.15 −9.28 −0.64 -

Py −4.79 −3.99 1.45 -

Pipe −7.78 −6.83 0.87 -

DMA −6.19 −5.57 1.23 -
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in which β = 1/kBT is the inverse temperature, kB is Boltzmann’s constant, T is the temperature,
and the normalization Q is the canonical partition function,

Q =
∑
j

gje
−β∆Gj . (A.4)

In both of these expressions, we note that the total energy of the jth energy level is

∆Gj =
∑
n

Nj,n∆G[n]. (A.5)

With Pj in hand, the probability of occupying the nth Ni state, πn, is then

πn =
1

N

∑
j

Nj,nPj, (A.6)

in which the sum over j includes all energy levels that are possible when m equivalents of Im
ligands are added to the system. In this work, we considered N = 48 Ni centers and T = 298.15 K,
which yields πn values that are converged to within ∼ 1%. As such, the error made with this finite
ensemble is negligible when compared to the uncertainties in the computed ∆G[n] values.
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A.9 Dynamic mechanical analysis for Ni-nIm materials

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.7: Storage and loss modulus (left; a,c,e,g) and tan δ (right; b,d,f,h) for Ni-1Im (a,b), Ni-2Im (c,d),
Ni-3Im (e,f), and Ni-4Im (g,h).
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A.10 Infrared spectra and color of all materials

(a) (b)

Figure A.8: IR spectra of polymers with (a) different numbers of Im equivalents per Ni center and (b) different
types of ligands with 2 equivalents per Ni center.

(a) (b)

Figure A.9: (a) Nickel carboxylate crosslinkers in solution with increasing amounts of imidazole, and (b) differences
in color for solutions of Ni-2Pipe and Ni-2DMA (sp3 hybridized nitrogen; group II) vs. Ni- 2Py, Ni-Im and Ni-2MeIm
(sp2 hybridized nitrogen; group I). All solutions were prepared according to the general procedure for neutral ligand
attachment (see Sec. A.2.2).
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A.11 Additional mechanical data

(a) (b)

(c) (d)

Figure A.10: Monotonic response at a rate of 0.023/s (top; a,b) and 0.57/s (bottom; c,d) when varying the number
(left; a,c) and type (right; b,d) of ligands in the material. The Ni-2DMA material was not tested at these rates.
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(a) (b)

Figure A.11: Stress relaxation response when varying the type of ligands in the material (a) and zoomed in (b).

Figure A.12: Cyclic response for Ni-2MeIm and Ni-2Py over many cycles, showing remarkable similarity.
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(a) (b)

(c) (d)

Figure A.13: Cyclic response for the (a) Linear, (b) Ni-1Im, (c) Ni-3Im, and (d) Ni-4Im materials.
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Supporting Information for Chapter 3

B.1 Solution for the network distribution

We seek to analytically solve Eq. (3.36) in order to evaluate the probability distribution P (ξ, t) at
any time under the deformation F(t). A new set of variables is taken: α = (ξ, t)T with gradient
∇α = (∂/∂ξ, ∂/∂t)T and vector b = ([L(t) · ξ] , 1)T . We may then rewrite Eq. (3.36) as the concise
linear partial differential equation

b(α) · ∇αP (α) = 0. (B.1)

This type of partial differential equation can be solved using the method of characteristics. The
characteristic solutions are parameterized by s in the system of first order linear ordinary differential
equations given by

dα

ds
=b[α(s)], (B.2a)

dP

ds
=0. (B.2b)

Eq. (B.2a) is a vector equation with four components (three for ξ, one for t). Consider the t
component,

dt

ds
= 1, (B.3)

which simply shows that t and s differ by a constant, which we will now choose to be zero, thereby
taking t(s) = s. The ξ components of Eq. (B.2a),

dξ

ds
= L(s) · ξ, (B.4)

are solved after taking ξ(0) = ξ0 and F(0) = 1 by

ξ(s) = F(s) · ξ0. (B.5)

101
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Eq. (B.2b) shows that P is constant when varying only s,

P [ξ(s), t(s)] = constant, (B.6)

where using Eq. (B.5) and t = s, and assuming we know P at some previous time τ < t, we then
have the solution

P [F(t) · ξ0, t] = P [F(τ) · ξ0, τ ] . (B.7)

We are free to choose ξ0 = F−1 · ξ and retrieve

P (ξ, t) = P
[

(τ)F
−1(t) · ξ, τ

]
, (B.8)

where we have used the deformation at t relative to the deformation at a previous time previous
time τ < t, denoted as (τ)F(t), given by Paolucci [135] as

(τ)F(t) = F(t) · F−1(τ). (B.9)

Now, if we presume that the network is at equilibrium at time τ = 0, we have P (ξ, 0) = P eq(ξ) and

(0)F(t) = F(t), and our solution then becomes

P (ξ, t) = P eq
[
F−1(t) · ξ

]
, (B.10)

which is Eq. (3.37) from the manuscript.

B.2 Retrieving the stress

Starting with Eqs. (3.38) and (3.44), we seek to retrieve a closed-form relation for the stress that
does not include gradients of the network distribution of end-to-end vectors. We first relate the
stress to the Helmholtz free energy using the hyperelastic formula (by way of neglecting dissipative
stresses) and the solution for the distribution evolution in Eq. (3.36), where a spherical pressure
term is included due to incompressibility. We then perform integration by parts, and after proving
that the resulting boundary integral term is zero for relevant chain models, we retrieve the stress
as an integral function of the network equilibrium distribution, the applied deformation, and the
single chain mechanical response.

B.2.1 Simplifications and integration by parts

We begin by taking the time derivative of a given by Eq. (3.38) under constant temperature, so
that it can later be used with Eq. (3.44),(

∂a

∂t

)
T

= n

∫∫∫ (
∂P

∂t

)
T

ψ∗ d3ξ − p
(
∂J

∂t

)
T

, (B.11)

where we know the evolution of P from Eq. (3.36), we have chosen n to be constant due to the
incompressibility constraint (we are free to consider the n derivatives to be nonzero and carry them
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through this derivation, but at the end they will be lumped into the pressure since they only produce
spherical terms, thus leaving the same results). For the last term, we use(

∂J

∂t

)
T

= J1 : L. (B.12)

Substituting (with J = 1) the above into Eq. (3.44) and neglecting dissipative stresses (taking the
inequality to be an equality) then shows that the stress must be

σ = −n
∫∫∫ (

∂P

∂ξ

)
ψ∗ξ d3ξ − p1. (B.13)

We now seek to rewrite the stress in a way that does not include gradients of P . We perform the
integration by parts∫∫∫ (

∂P

∂ξ

)
ψ∗ξ d3ξ =

∫∫
Pψ∗

(
ξξ

ξ

)
d2ξ −

∫∫∫
P

[(
∂ψ∗

∂ξ

)
ξ + ψ∗1

]
d3ξ, (B.14)

where the double integral is along the boundary ξ →∞ with unit normal vector ξ̂ = ξ/ξ, and d2ξ
is the surface element. We are free to lump the spherical term into p1 without loss of generality.
Note that we have not taken into account that the molecular partition functions may depend on
the volume – this dependence would produce more spherical terms that would also now be lumped
into p. The stress is now written as

σ = n

∫∫∫
P

(
∂ψ∗

∂ξ

)
ξ d3ξ − n

∫∫
Pψ∗

(
ξξ

ξ

)
d2ξ − p1.

If we then assume that ψ∗ is rotationally symmetric, we receive the non-polar stress

σ = n

∫∫∫
P

(
∂ψ∗

∂ξ

)(
ξξ

ξ

)
d3ξ − n

∫∫
Pψ∗

(
ξξ

ξ

)
d2ξ − p1. (B.15)

Taking the term from the integration along the boundary to be zero, taking p = peq +∆p, and using
the solution for P in Eq. (3.37), we receive

σ(t) = n

∫∫∫
P eq

[
F−1(t) · ξ

](∂ψ∗
∂ξ

)(
ξξ

ξ

)
d3ξ − [peq + ∆p(t)] 1, (B.16)

which is Eq. (3.45) from the manuscript. In the following section we discuss the boundary integral
stress term in depth.

B.2.2 The boundary integral stress term

We now consider the stress from the integration along the boundary in Eq. (B.15) in order to
show that it is zero for arbitrary deformations as long as ψ∗ satisfies certain growth criteria. Using
Eq. (3.37) and taking dS = (ξ/ξ) d2ξ, the boundary integral stress term is

σ̂ = n

∫∫
P eq

(
F−1 · ξ

)
ψ∗(ξ)ξ dS. (B.17)
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We recall that ψ∗ had been assumed to be rotationally symmetric, and the boundary is along
ξ →∞, so we may take ψ∗ out of the integrand and write

σ̂ = n lim
ξ→∞

[ψ∗(ξ)]

∫∫
P eq

(
F−1 · ξ

)
ξ dS. (B.18)

We take the change of variables ξ 7→ F · ξ, where as pointed out by Paolucci [135], the surface
element transforms as dS 7→ JF−T · dS. We also use J = 1 and then receive

σ̂ = n lim
ξ→∞

[ψ∗(ξ)]

∫∫
P eq (ξ) (F · ξ) F−T · dS. (B.19)

Since ψ∗ is rotationally symmetric, by the distribution-behavior correspondence in Eq. (3.13) P eq

is rotationally symmetric as well. We may then remove P eq from the integrand along with the
deformation terms for

σ̂ = n lim
ξ→∞

[
ψ∗(ξ)P eq(ξ)

]{
FF−T :

∫∫
ξ dS

}
, (B.20)

and now we use dS = ξξ dΩ, where dΩ is the differential solid angle, and remove factors of ξ from
the integrand to finally write σ̂ as

σ̂ =

(
4πn

3
1

)
lim
ξ→∞

[
ξ3ψ∗(ξ)P eq(ξ)

]
, (B.21)

where the term in the parentheses was retrieved from

FF−T :

∫∫
ξ̂ξ̂ dΩ = F ·

(
4π

3
1

)
· F−1 =

4π

3
1. (B.22)

So far we have shown that the stress contributed by σ̂ is spherical, and could therefore be lumped
into the pressure term −p1, as long as it is finite. We are then tasked with proving that the limit in
Eq. (B.21) is finite, but we will instead prove it is zero. We will accomplish this by requiring that
ψ∗ grows sufficiently fast as ξ →∞, and using l’Hôpital’s rule and the squeeze theorem. To start,
we require that the growth of ψ∗ as ξ →∞ is greater than that of a logarithm function, i.e.

lim
ξ→∞

[
ψ∗(ξ)

c ln(ξ)

]
=∞, ∀c > 0. (B.23)

This is required to guarantee that the denominator of Eq. (3.13) is finite, but we will use it here as
well. Take Eq. (3.13) with the denominator now understood to be a finite constant, thus eliminating
it, as we use the limit in Eq. (B.21) to define the functional of ψ∗(ξ),

W (ψ∗) = lim
ξ→∞

[
ξ3ψ∗(ξ)

eβψ∗(ξ)

]
, (B.24)

where we can assume that β > 0. See from Eq. (B.23) that we have already required that ψ∗ is
positive as ξ → ∞, so we have in turn required that W (ψ∗) ≥ 0. Also see from Eq. (B.24) that
W (ψ∗) ≤ W (c ln ξ) for all ψ∗ that satisfy the requirement from Eq. (B.23), so together we have

W (c ln ξ) ≥ W (ψ∗) ≥ 0, ∀c > 0. (B.25)
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Next, let us consider the special (albeit prohibited for admissible ψ∗) case of ψ∗ = c ln ξ, where we
repeatedly use l’Hôpital’s rule to show

W (c ln ξ) = lim
ξ→∞

[
cξ3 ln ξ

ξcβ

]
, (B.26)

= lim
ξ→∞

[
6ξ3−cβ

β(cβ − 1)(cβ − 2)(cβ − 3)

]
, (B.27)

in order to see that W (c ln ξ) = 0 for all cβ > 3. Since Eq. (B.25) holds for all cβ > 3, by the
squeeze theorem we retrieve W (ψ∗) = 0 for any ψ∗ that satisfies Eq. (B.23). Thus, the stress from
the integration along the boundary must be zero, σ̂ = 0, for any rotationally symmetric ψ∗ that
grows faster than logarithmically as ξ →∞. This is true for the EFJC model considered here.

B.3 Reduction to Neo-Hookean model

The Neo-Hookean model is retrieved when the ideal chain free energy in Eq. (3.31) and the corre-
sponding equilibrium distribution in Eq. (3.32) are utilized. Substitution of these into the stress
from Eq. (3.45) yields

σ =
nbT

(2π)3/2

∫∫∫
exp

(
−1

2

∥∥F−1 · v
∥∥2

2

)
vv d3v − [peq + ∆p] 1, (B.28)

where we have made convenient use of the new non-dimensional variable

v = γ
√

3cκNb = ξ

√
3cκ
Nb`2

b

, (B.29)

and where ‖a‖2
2 = a · a. We may take the change of variables v 7→ F · v, where d3v is unaltered

due to incompressibility, to instead write the stress as

σ =
nbT

(2π)3/2

(
FFT :

∫∫∫
e−v

2/2 vv d3v

)
− [peq + ∆p] 1. (B.30)

This integral can be directly computed,∫∫∫
e−v

2/2 vv d3v = (2π)3/2 1, (B.31)

and we compute the same type of integral in order to retrieve peq = nbT . Our end result is now
seen to be

σ(t) = nbT [B(t)− 1]−∆p(t)1, (B.32)

which is exactly the incompressible Neo-Hookean model with shear modulus nbT .
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B.4 Infinitesimal deformation

Here we seek to find the reduced form of the stress from Eq. (3.45) when an infinitesimal deformation
F = 1 + E is applied, where E2 ≈ 0. Incompressibility is now enforced via tr(E) = 0, and the
inverse is F−1 = 1− E. We take P eq(F−1 · ξ) appearing in Eq. (3.45), which we can write in term
of ψ∗(F−1 · ξ) using Eq. (3.13), and is expanded as

ψ∗(F−1 · ξ) = ψ∗(ξ)− E :

(
∂ψ∗

∂ξ
ξ

)
+O(E2). (B.33)

We substitute this into Eq. (3.13) to obtain

P eq(F−1 · ξ) = P eq(ξ)e
E:
(
∂βψ∗
∂ξ

ξ
)

+O(E2)
. (B.34)

The equilibrium pressure peq is the form of the stress when F = 1, so we will receive a term in the
integrand of the following form, which is simplified for small E as

P eq(ξ)

[
e
E:
(
∂βψ∗
∂ξ

ξ
)

+O(E2) − 1

]
=P eq(ξ)

[
E :

(
∂βψ∗

∂ξ
ξ

)
+O(E2)

]
, (B.35)

=E :

(
−∂P

eq

∂ξ
ξ

)
+O(E2). (B.36)

We recall that both P eq and ψ∗ are spherically symmetric, and substitute into Eq. (3.45) for

σ = n

∫ ∞
0

(
−∂P

eq

∂ξ

)(
∂ψ∗

∂ξ

)
ξ4 dξE :

∫∫
ξ̂ξ̂ξ̂ξ̂ dΩ−∆p1 +O(E2). (B.37)

Now, after completing the integral

E :

∫∫
ξ̂ξ̂ξ̂ξ̂ dΩ =

4π

15
[2E + tr(E)1] , (B.38)

where tr(E) = 0 here, and then defining the shear modulus as

µ =
4π

15
nbT

∫∫∫ (
−∂P

eq

∂ξ

)(
∂βψ∗

∂ξ

)
ξ4 dξ, (B.39)

we can finally write the stress as

σ(t) = 2µE(t)−∆p(t)1 +O(E2), (B.40)

which are Eqs. (3.47) and (3.48) from the manuscript.

B.5 Python package

This section details the source code (a Python package constituted by three distinct modules) and
several self-contained examples pertaining to the Python implementation [126] of the model [125]
developed in Chapter 3 and Appendix B. The Python package is available on GitHub and PyPI

https://github.com/mbuche/Buche_Silberstein_model_2020/
https://pypi.org/project/Buche-Silberstein-model-2020/
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(pip install Buche Silberstein model 2020). It was written for Python 3, and uses numpy

and scipy. After installation, the package is best imported using:

from Buche_Silberstein_model_2020 import *

B.5.1 Basic Usage

The script below is a simple, concise example of using this package:

# Import the package

from Buche_Silberstein_model_2020 import *

# Create the constitutive model

model = Buche_Silberstein_model_2020(number_of_links = 25, nondimensional_link_stiffness = 50)

# Define the applied deformation and specify the boundary conditions

def F(t): return 1 + t

F.type = ’uniaxial ’, ’11’

# Solve the constitutive model (for the other deformations components , the stress , etc .)

model.solve(F, [0, 3])

After importing the package, the constitutive model is created using:

model = Buche_Silberstein_model_2020(number_of_links =25, \

nondimensional_link_stiffness =50)

The extensible freely-jointed chain (EFJC) model is automatically utilized. Note that the number
of links in the chain (Nb) and the nondimensional link stiffness (κ) have been specified as 25 and
50, respectively. Also note the following optional keyword arguments:

• shear_modulus, which defaults to 1 (nondimensional stress);

• bulk_modulus, which defaults to 1000 times shear_modulus (effectively incompressible);

• method, which defaults to ’Gibbs_Legendre’ (other option is ’Gaussian-Gibbs-Legendre’,
and ’Helmholtz’ will be implemented in a future release);

• num_grid_romb, which defaults to (1 + 2** 9) and controls the number of grid points used
for completing spatial integrals.

The constitutive model also inherits the following single-chain functions from the EFJC model, each
as a function of the nondimensional extension (i.e. model.eta(2.3) gives the nondimensional force
from a nondimensional extension of 2.3):

• eta, the nondimensional force (Gibbs-Legendre method);

• vartheta, the nondimensional Helmholtz free energy per link (Gibbs-Legendre method);

• P_eq, the nondimensional equilibrium distribution (Gibbs-Legendre method);

• g_eq, the nondimensional equilibrium radial distribution function (Gibbs-Legendre method);

• P_eq_Gaussian, the nondimensional equilibrium distribution (Gibbs-Legendre method);
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• g_eq_Gaussian, the nondimensional equilibrium radial distribution function (Gaussian-Gibbs-
Legendre method).

After creating the constitutive model, we define the applied deformation and the associated traction
boundary conditions:

def F(t): return 1 + t

F.type = ’uniaxial’, ’11’

This corresponds to uniaxial tension in the 1-direction. The solver will apply the boundary condi-
tions and find the unknown deformation components. The solver also reduces spatial integration
time (2D instead of 3D) through utilization of the symmetry conserved by the deformation in this
case. The model is solved over a period of 3 seconds via

model.solve(F, [0, 3])

An array of time values for the solution to be evaluated at can be given instead of a timespan. The
solution, attributed as model.solution, itself has several attributes (i.e. model.solution.t returns the
attribute t):

• t, the times where the solution have been evaluated (shape N);

• F, the deformation gradient (shape 3 by 3 by N);

• Cauchy_stress, the true stress tensor (shape 3 by 3 by N);

• nominal_stress, the engineering stress tensor (shape 3 by 3 by N);

• Hencky_strain, the true strain tensor (shape 3 by 3 by N).

Parameter study

The example script below generates a large portion of Figs. 3.3(a) and 3.4(a) from Chapter 3:
# Import the package

from Buche_Silberstein_model_2020 import *

# Import matplotlib for plotting and saving

import matplotlib.pyplot as plt

def save_current_figure(xlabel , ylabel , name):

plt.xlabel(xlabel)

plt.ylabel(ylabel)

plt.tight_layout ()

plt.show()

fig = plt.gcf()

plt.savefig(name)

plt.close()

# Compare equilibrium radial distribution functions as the number of links increases

number_of_links_list = [3, 5, 10, 25]

gamma_plotting = np.linspace(0, 1.6, 1000)

for number_of_links in number_of_links_list:

model = Buche_Silberstein_model_2020(number_of_links = number_of_links , nondimensional_link_stiffness = 50)

plt.plot(gamma_plotting , model.g_eq(gamma_plotting), color = ’blue’)

plt.plot(gamma_plotting , model.g_eq_Gaussian(gamma_plotting), color = ’red’)

plt.legend([’Gibbs -Legendre ’, ’Gaussian ’])

save_current_figure(’Nondimensional single -chain extension ’, ’Nondimensional radial distribution function ’, ’g_eq.png’)

# Compare uniaxial tension results as the number of links increases

def F(t): return 1 + t

F.type = ’uniaxial ’, ’11’

model_0 = Neo_Hookean ()
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model_0.solve(F, [0, 3])

for number_of_links in number_of_links_list[1:]:

model_1 = Buche_Silberstein_model_2020(number_of_links = number_of_links , nondimensional_link_stiffness = 50)

model_2 = Buche_Silberstein_model_2020(number_of_links = number_of_links , nondimensional_link_stiffness = 50, \

method = ’Gaussian -Gibbs -Legendre ’)

model_1.solve(F, [0, 3])

model_2.solve(F, [0, 3])

plt.plot(model_1.solution.F[0, 0, :], model_1.solution.Cauchy_stress[0, 0, :], color = ’blue’)

plt.plot(model_2.solution.F[0, 0, :], model_2.solution.Cauchy_stress[0, 0, :], color = ’red’)

if number_of_links == number_of_links_list[1]:

plt.plot(model_0.solution.F[0, 0, :], model_0.solution.Cauchy_stress[0, 0, :], color = ’green’)

plt.xlim([1, 4])

plt.ylim([0, 35])

plt.legend([’Gibbs -Legendre ’, ’Gaussian -Gibbs -Legendre ’, ’Neo -Hookean ’])

save_current_figure(’Applied stretch (uniaxial tension)’, ’Nondimensional stress ’, ’stress.png’)

B.5.2 Python Modules

The Python module file miscellaneous.py is printed below:

# ###############################################################################################################################

# Miscellaneous functions and variables

# ###############################################################################################################################

# Import libraries

import sys

import numpy as np

import scipy.linalg as la

# Use to avoid overflow

minimum_float = sys.float_info.min

maximum_float = sys.float_info.max

minimum_exponent = np.log(minimum_float)/np.log(10)

maximum_exponent = np.log(maximum_float)/np.log(10)

# The identity tensors

identity_tensor = np.diag([1, 1, 1])

fourth_rank_identity_tensor = np.tensordot(identity_tensor , identity_tensor , axes = 0)

# Function returning the deviatoric portion of a tensor

def dev(A):

return A - A.trace ()/3*identity_tensor

# Function to check symmetries of deformation gradient

def symmetry_check(F):

diagonal_check = np.count_nonzero(F - np.diag(np.diagonal(F)))

if diagonal_check == 0:

if np.isclose(F[1, 1]**2, 1/F[0, 0]) and np.isclose(F[1, 1], F[2, 2]):

return ’uniaxial ’

elif np.isclose(F[2, 2], 1/F[0, 0] **2) and np.isclose(F[1, 1], F[0, 0]):

return ’equibiaxial ’

else:

return ’diagonal ’

else:

return ’none’

The Python module file single_chain.py is printed below:

# ###############################################################################################################################

# General setup

# ###############################################################################################################################

# Import miscellaneous functions and variables

from Buche_Silberstein_model_2020.miscellaneous import *

# Import libraries

import numpy as np

from scipy.integrate import quad

from scipy.optimize import root_scalar

# ###############################################################################################################################

# General single -chain class

# ###############################################################################################################################

class single_chain:

# Initialization

def __init__(self , ** kwargs):

# Default parameter values

self.epsabs = 1e-3

self.epsrel = 1e-3

self.num_interp = int(3e3)

self.interp_kind_1D = ’cubic’

self.cutoff_for_log_over_sinh = 3e1
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self.cutoff_stretch_for_harmonic = 3

self.N_b = 88

self.kappa = 888

# Retrieve specified parameters

for key , value in kwargs.items ():

exec("self.%s = value" % key , {’self’: self , ’value ’: value})

# Function to invert a function

def inv_fun_1D(self , x_query , fun , bounds = None):

return root_scalar(lambda x: fun(x) - x_query , x0 = x_query*0.95, x1 = x_query/0.95).root

# Function to avoid overflow when computing ln(x/sinh(x))

def log_over_sinh(self , x):

# Determine when argument is sufficiently large

where_x_large = np.nan_to_num(x, nan = -1) > self.cutoff_for_log_over_sinh

log_of_x_over_sinh_x = np.zeros(x.shape)

# Use asymptotic relation valid for sufficiently large arguments

if where_x_large.any():

log_of_x_over_sinh_x[where_x_large] = np.log(2*x[where_x_large]) - x[where_x_large]

# Compute analytically otherwise , and zero where argument is zero

where_x_zero = x == 0

where_compute = ~( where_x_large + where_x_zero)

if where_compute.any():

log_of_x_over_sinh_x[where_compute] = np.log(x[where_compute]/np.sinh(x[where_compute]))

return log_of_x_over_sinh_x

# Hyperbolic cotangent function

def coth_safe(self , eta):

eta = np.where(eta == 0, minimum_float , eta)

return 1/np.tanh(eta)

# Langevin function

def Langevin(self , eta):

eta = np.where(eta == 0, minimum_float , eta)

return 1/np.tanh(eta) - 1/eta

# Inverse Langevin function

def inv_Langevin(self , gamma):

return self.inv_fun_1D(gamma , self.Langevin)

# ###############################################################################################################################

# Extensible freely -joined chain model

# ###############################################################################################################################

class EFJC(single_chain):

# For more information , see:

# Analytical results of the extensible freely jointed chain model

# Alessandro Fiasconaro and Fernando Falo

# Physica A, 532 , 121929 (2019)

# doi.org/10.1016/j.physa.2019.121929

# See also:

# Statistical mechanical constitutive theory of polymer networks:

# The inextricable links between distribution , behavior , and ensemble

# Michael R. Buche and Meredith N. Silberstein

# Physical Review E, 102 , 012501 (2020)

# doi.org/10.1103/PhysRevE.102.012501

# Initialization

def __init__(self , ** kwargs):

# Retrieve default and specified parameter values

single_chain.__init__(self , ** kwargs)

# Nondimensional mechanical response of a single chain

def gamma_fun(eta):

coth = self.coth_safe(eta)

L = self.Langevin(eta)

return L + eta/self.kappa*(1 + (1 - L*coth)/(1 + eta/self.kappa*coth))

# Compute and store the inverted nondimensional mechanical response to interpolate from

self.gamma_store = np.linspace(0, self.cutoff_stretch_for_harmonic , self.num_interp)

self.eta_store = np.zeros(self.gamma_store.size)

for i in range(1, len(self.gamma_store)):

self.eta_store[i] = self.inv_fun_1D(self.gamma_store[i], gamma_fun)

# Function to interpolate from the inverted nondimensional mechamical response of the chain

def eta_fun(gamma):

if isinstance(gamma , np.ndarray):

eta_out = np.zeros(gamma.shape)

harmonic_region = gamma > self.cutoff_stretch_for_harmonic

eta_out[harmonic_region] = self.kappa*(gamma[harmonic_region] - 1)

eta_out[~harmonic_region] = np.interp(gamma[~harmonic_region], self.gamma_store , self.eta_store)

else:

if gamma > self.cutoff_stretch_for_harmonic:

eta_out = self.kappa*(gamma - 1)

else:

eta_out = np.interp(gamma , self.gamma_store , self.eta_store)
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return eta_out

# Nondimensional Helmholtz free energy per link of a single chain

def vartheta_fun(gamma):

# Compute mechanical response

eta = np.array(eta_fun(gamma))

eta[eta == 0] = minimum_float

# Compute nondimensional Helmholtz free energy per link

coth = self.coth_safe(eta)

L = self.Langevin(eta)

return eta*L + self.log_over_sinh(eta) - np.log(1 + eta/self.kappa*coth) \

+ eta ** 2/self.kappa/2*(1/2 + (1 - L*coth)/(1 + eta/self.kappa*coth))

# Nondimensional equilibrium distribution function

def P_eq_fun(gamma , normalization = 1):

# Compute nondimensional Helmholtz free energy per link

vartheta = vartheta_fun(gamma)

# Compute and return P_eq

return np.exp(-self.N_b*vartheta)/normalization

# Nondimensional equilibrium radial distribution function

def g_eq_fun(gamma , normalization = 1):

return 4*np.pi*gamma **2*P_eq_fun(gamma , normalization)

# Normalize the equilibrium distribution

P_eq_normalization = quad(g_eq_fun , 0, np.inf , epsabs = self.epsabs , epsrel = self.epsrel , full_output = 1)[0]

# Compute average nondimensional end -to -end length at equilibrium

integrand = lambda gamma: gamma*g_eq_fun(gamma , normalization = P_eq_normalization)

self.average_gamma_eq = quad(integrand , 0, np.inf , epsabs = self.epsabs , epsrel = self.epsrel , full_output = 1)[0]

# Nondimensional equilibrium (Gaussian) distribution function valid in the limit N_b -> inf

def P_eq_Gaussian_fun(gamma):

c_kappa = self.kappa*(self.kappa + 1)/(self.kappa*self.kappa + 6*self.kappa + 3)

return (3*c_kappa*self.N_b/(2*np.pi))** (3/2)*np.exp(-3/2*c_kappa*self.N_b*gamma*gamma)

# Nondimensional equilibrium radial (Gaussian) distribution function valid in the limit N_b -> inf

def g_eq_Gaussian_fun(gamma , normalization = 1):

return 4*np.pi*gamma **2*P_eq_Gaussian_fun(gamma)

# Retain each single -chain function

self.eta = eta_fun

self.vartheta = vartheta_fun

self.P_eq = lambda gamma: P_eq_fun(gamma , normalization = P_eq_normalization)

self.g_eq = lambda gamma: g_eq_fun(gamma , normalization = P_eq_normalization)

self.P_eq_Gaussian = lambda gamma: P_eq_Gaussian_fun(gamma)

self.g_eq_Gaussian = lambda gamma: g_eq_Gaussian_fun(gamma)

The Python module file constitutive_model.py is printed below:
# ###############################################################################################################################

# General setup

# ###############################################################################################################################

# Import single -chain model library

from Buche_Silberstein_model_2020.single_chain import *

# Import libraries

import numpy as np

import scipy.linalg as la

from scipy.integrate import romb

from scipy.optimize import root_scalar

# ###############################################################################################################################

# Solve a model with no internal state variables

# ###############################################################################################################################

class solver:

# Currently only implemented in F principal coordinates

# Also assumes initially isotropic and some symmetry is preserved by the deformation

def solve(self , F_applied , t_span , *args , ** kwargs):

# Residual function to apply traction boundary conditions

if F_applied.type[0] == ’uniaxial ’:

def guess(t):

return 1/np.sqrt(F_applied(t))

app_comp = int(F_applied.type[1][0]) - 1

def residual(t, F_traction_free , return_F = False):

F = np.zeros((3, 3))

F[app_comp , app_comp] = F_applied(t)

F[app_comp - 1, app_comp - 1] = F_traction_free

F[app_comp - 2, app_comp - 2] = F_traction_free

if return_F is True:

return F

else:

return self.Cauchy_stress(t, F)[app_comp - 1, app_comp - 1]
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# Default to a certain number of points in time

if len(t_span) == 2:

t_span = np.linspace(t_span[0], t_span[1], 23)

class solution:

pass

solution.t = t_span

# Function to solve for F components using boundary conditions

def F_fun(t):

F_traction_free = root_scalar(lambda F: residual(t, F), x0 = guess(t)*0.95 , x1 = guess(t)/0.95).root

return residual(t, F_traction_free , return_F = True)

# Recompute and store all components of deformation gradient

solution.F = np.zeros((3, 3, len(solution.t)))

for index_t in range(len(solution.t)):

solution.F[:, :, index_t] = F_fun(solution.t[index_t])

# Compute relevant stresses

solution.Cauchy_stress = np.zeros((3, 3, len(solution.t)))

solution.nominal_stress = np.zeros((3, 3, len(solution.t)))

solution.Hencky_strain = np.zeros((3, 3, len(solution.t)))

for index_t in range(len(solution.t)):

solution.Cauchy_stress[:, :, index_t] = \

self.Cauchy_stress(solution.t[index_t], solution.F[:, :, index_t])

solution.nominal_stress[:, :, index_t] = \

la.det(solution.F[:, :, index_t])*la.inv(solution.F[:, :, index_t]).dot(solution.Cauchy_stress[:, :, index_t])

solution.Hencky_strain[:, :, index_t] = \

la.logm(la.sqrtm(solution.F[:, :, index_t].dot(solution.F[:, :, index_t].T)))

# Return solution object with t, F, and stresses as attributes

self.solution = solution

# ###############################################################################################################################

# General class for elastic models

# ###############################################################################################################################

class elastic(solver):

# Initialization

def __init__(self , ** kwargs):

# Default parameter values

self.shear_modulus = 1

self.number_of_links = 88

self.nondimensional_link_stiffness = 888

self.num_grid_romb = 1 + 2**9

self.method = ’Gibbs -Legendre ’

# Retrieve specified parameters

for key , value in kwargs.items ():

exec("self.%s = value" % key , {’self’: self , ’value ’: value})

# Check if bulk modulus specified , otherwise ensure much larger than modulus

def bulk_modulus_fun(self):

try:

self.bulk_modulus

except AttributeError:

return 1e3*self.shear_modulus

else:

return self.bulk_modulus

# Default spherical term in Cauchy stress for effectively incompressible models

def spherical_Cauchy_stress(self , F):

J = la.det(F)

return self.bulk_modulus_fun ()*(J - 1)*identity_tensor

# ###############################################################################################################################

# Neo -Hookean model

# ###############################################################################################################################

class Neo_Hookean(elastic):

# For more information , see:

# Large elastic deformations of isotropic materials. I. Fundamental concepts.

# Ronald S. Rivlin

# Philosophical Transactions of the Royal Society of London.

# Series A, Mathematical and Physical Sciences , 240 , 822 (1948)

# doi.org/10.1098/rsta.1948.0002

# Initialization

def __init__(self , ** kwargs):

# Retrieve default and specified parameter values

elastic.__init__(self , ** kwargs)

# Stress due to the applied deformation

def Cauchy_stress(self , *args):

# Kinematics

F = args[-1]

J = la.det(F)
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B = F.dot(F.T)

dev_B_bar = dev(B)/J** (2/3)

# Constitutive relation for the stress

return self.shear_modulus*dev_B_bar/J + self.spherical_Cauchy_stress(F)

# ###############################################################################################################################

# Buche - Silberstein model

# ###############################################################################################################################

class Buche_Silberstein_model_2020(elastic , EFJC):

# For more information , see:

# Statistical mechanical constitutive theory of polymer networks:

# The inextricable links between distribution , behavior , and ensemble

# Michael R. Buche and Meredith N. Silberstein

# Physical Review E, 102 , 012501 (2020)

# doi.org/10.1103/PhysRevE.102.012501

# Initialization

def __init__(self , ** kwargs):

# Retrieve default and specified parameter values

elastic.__init__(self , ** kwargs)

EFJC.__init__(self , N_b = self.number_of_links , kappa = self.nondimensional_link_stiffness)

# Mark grid not initialized

self.grid_initialized = False

# Will implement the Helmholtz method here in the future

if self.method == ’Helmholtz ’:

pass

elif self.method == ’Gibbs -Legendre ’:

self.P_eq_used = self.P_eq

elif self.method == ’Gaussian -Gibbs -Legendre ’:

self.P_eq_used = self.P_eq_Gaussian

def initialized_grid(self , symmetry):

# Mark grid as initialized using the given symmetry

self.grid_initialized = symmetry

if symmetry == ’uniaxial ’:

w = np.linspace(0, 1, 1 + self.num_grid_romb)[:-1]

self.dw = w[1] - w[0]

W_z , W_r = np.meshgrid(w, w)

self.Z = np.arctanh(W_z)

self.R = np.arctanh(W_r)

GAMMA = np.sqrt(self.Z*self.Z + self.R*self.R)

ELEMENT = 4*np.pi*self.R/(1 - W_z*W_z)/(1 - W_r*W_r)

GEOM = np.zeros ((self.num_grid_romb , self.num_grid_romb , 3, 3))

GEOM[:, :, 0, 0] = self.Z*self.Z

GEOM[:, :, 1, 1] = self.R*self.R/2

GEOM[:, :, 2, 2] = self.R*self.R/2

ETA_OVER_GAMMA = np.zeros(GAMMA.shape)

ETA_OVER_GAMMA[GAMMA != 0] = self.eta(GAMMA[GAMMA != 0])/GAMMA[GAMMA != 0]

self.ELEMENT_STRESS = (self.shear_modulus*self.number_of_links*ETA_OVER_GAMMA*ELEMENT)[:, :, None , None]*GEOM

# No (None) symmetry

else:

w = np.linspace(-1, 1, 2 + self.num_grid_romb)[1:-1]

self.dw = w[1] - w[0]

W_x , W_y , W_z = np.meshgrid(w, w, w)

self.X = np.arctanh(W_x)

self.Y = np.arctanh(W_y)

self.Z = np.arctanh(W_z)

GAMMA = np.sqrt(self.X*self.X + self.Y*self.Y + self.Z*self.Z)

ELEMENT = 1/(1 - W_x*W_x)/(1 - W_y*W_y)/(1 - W_z*W_z)

GEOM = np.zeros ((self.num_grid_romb , self.num_grid_romb , self.num_grid_romb , 3, 3))

GEOM[:, :, :, 0, 0] = self.X*self.X

GEOM[:, :, :, 0, 1] = self.X*self.Y

GEOM[:, :, :, 0, 2] = self.X*self.Z

GEOM[:, :, :, 1, 0] = self.Y*self.X

GEOM[:, :, :, 1, 1] = self.Y*self.Y

GEOM[:, :, :, 1, 2] = self.Y*self.Z

GEOM[:, :, :, 2, 0] = self.Z*self.X

GEOM[:, :, :, 2, 1] = self.Z*self.Y

GEOM[:, :, :, 2, 2] = self.Z*self.Z

ETA_OVER_GAMMA = np.zeros(GAMMA.shape)

ETA_OVER_GAMMA[GAMMA != 0] = self.eta(GAMMA[GAMMA != 0])/GAMMA[GAMMA != 0]

self.ELEMENT_STRESS = (self.shear_modulus*self.number_of_links*ETA_OVER_GAMMA*ELEMENT)[:, :, :, None , None]*GEOM

# Stress due to the applied deformation

def Cauchy_stress(self , *args):

# Kinematics

F = args[-1]

J = la.det(F)

F_bar = F/J **(1/3)

if symmetry_check(F_bar) == ’uniaxial ’:
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# Only initialize the grid if it has not been initialized already using this symmetry

if self.grid_initialized != ’uniaxial ’:

self.initialized_grid(’uniaxial ’)

# Relatively -deformed coordinates

GAMMA_F = np.sqrt((self.Z/F_bar[0, 0])** 2 + F_bar[0, 0]*self.R*self.R)

# Integrate for and return the stress

INTEGRAND = self.P_eq_used(GAMMA_F)[:, :, None , None]*self.ELEMENT_STRESS

return self.spherical_Cauchy_stress(F) + romb(romb(INTEGRAND , dx = self.dw , axis = 0), dx = self.dw , axis = 0)/J

# General , no symmetry utilized

else:

# Only initialize the grid if it has not been initialized already using this symmetry

if self.grid_initialized != None:

self.initialized_grid(None)

# Relatively -deformed coordinates

F_bar_inv = la.inv(F_bar)

X_F = F_bar_inv[0, 0]*self.X + F_bar_inv[0, 1]*self.Y + F_bar_inv[0, 2]*self.Z

Y_F = F_bar_inv[1, 0]*self.X + F_bar_inv[1, 1]*self.Y + F_bar_inv[1, 2]*self.Z

Z_F = F_bar_inv[2, 0]*self.X + F_bar_inv[2, 1]*self.Y + F_bar_inv[2, 2]*self.Z

GAMMA_F = np.sqrt(X_F*X_F + Y_F*Y_F + Z_F*Z_F)

# Integrate for and return the stress

INTEGRAND = self.P_eq_used(GAMMA_F)[:, :, :, None , None]*self.ELEMENT_STRESS

return self.spherical_Cauchy_stress(F) + \

romb(romb(romb(INTEGRAND , dx = self.dw, axis = 0), dx = self.dw, axis = 0), dx = self.dw, axis = 0)/J
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C.1 Simplification under transition state theory

Here we detail the mathematical operations involved with simplifying the reaction rates R′j(ξ; t)
and R′′j (ξ; t) in Eqs. (5.13) and (5.14) when applying the assumptions of transition state theory,
resulting in Eqs. (5.24) and (5.25). We first substitute the primary assumption of transition state
theory Eq. (5.16) into Eq. (5.13) for

R′j(ξ; t) =
PA(ξ; t)

qP eq
A (ξ)

∫
· · ·
∫
e−βH(Γ) pj

mj

Θ(pj)δ
3 [R(Γ)− ξ] δ

(
`‡j − `j

) M∏
i=1
i 6=j

Θ
(
`‡i − `i

)
dΓ. (C.1)

Similarly, we substitute Eq. (5.18) into Eq. (5.14) for

R′′j (ξ; t) =
PBj(ξ; t)

qP eq
Bj

(ξ)

∫
· · ·
∫
e−βH(Γ)

(
− pj
mj

)
Θ(−pj)δ3 [R(Γ)− ξ] δ

(
`‡j − `j

) M∏
i=1
i 6=j

Θ
(
`‡i − `i

)
dΓ.

(C.2)
Note that we have used Eq. (5.3), which is f eq(Γ) = e−βH(Γ)/q. We may complete the portion of
these integrals related to the momentum along the reaction coordinate, which contributes a factor
of bT = 1/β in either case, and where we retain a delta function in order to keep the integration
over the whole phase space:
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∫
· · ·
∫
e−βH(Γ) pj

mj

Θ(pj)δ
3 [R(Γ)− ξ] δ

(
`‡j − `j

) M∏
i=1
i 6=j

Θ
(
`‡i − `i

)
dΓ =

∫
· · ·
∫
e−βH(Γ)

(
− pj
mj

)
Θ(−pj)δ3 [R(Γ)− ξ] δ

(
`‡j − `j

) M∏
i=1
i 6=j

Θ
(
`‡i − `i

)
dΓ =

1

β

∫
· · ·
∫
e−βH(Γ)δ (pj) δ

3 [R(Γ)− ξ] δ
(
`‡j − `j

) M∏
i=1
i 6=j

Θ
(
`‡i − `i

)
dΓ. (C.3)

The remaining integral is the partition function of the transition state q∗‡j(ξ) in Eq. (5.23), and the
reaction rates are now rewritten as

R′j(ξ; t) =
q∗‡j(ξ)

βqP eq
A (ξ)

PA(ξ; t), (C.4)

R′′j (ξ; t) =
q∗‡j(ξ)

βqP eq
Bj

(ξ)
PBj(ξ; t). (C.5)

We use Eq. (5.19) for qP eq
A (ξ) = q∗A(ξ) and Eq. (5.20) for qP eq

Bj
(ξ) = q∗Bj(ξ); with the reaction rate

coefficient functions k′j(ξ) and k′′j (ξ) defined in Eq. (5.26) and Eq. (5.27), this allows us to obtain
the simplified reaction rates R′j(ξ; t) and R′′j (ξ; t) in Eqs. (5.24)–(5.25).

C.2 Extended derivations for the macroscopic theory

C.2.1 Macroscopically-obtained equilibrium

Here we show that the equilibrium probabilities P eq
A (ξ) and P tot,eq

Bj
in Eqs. (5.38) and (5.39), re-

spectively, may be obtained from the Helmholtz free energy density a(t) in Eq. (5.49) through min-
imization. We use the Lagrange multiplier Λ to enforce the conservation requirement in Eq. (5.36)
and write

aΛ(t) ≡ a(t)− Λ

[∫∫∫
PA(ξ; t) d3ξ +

M∑
j=1

P tot
Bj

(t)− 1

]
. (C.6)

We now take the functional derivative [204] of aΛ(t) with respect to the intact chain probability
distribution PA(ξ; t) and each broken chain probability P tot

Bj
(t). Evaluating the results at equilibrium

and setting them equal to zero, we obtain the following:
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(
δaΛ

δPA(ξ; t)

)
P tot
Bj

∣∣∣∣∣∣
eq

= nµ∗,eq
A (ξ)− nbT − Λ = 0, (C.7)

(
δaΛ

δP tot
Bj

(t)

)
PA

∣∣∣∣∣
eq

= nµeq
Bj
− nbT − Λ = 0. (C.8)

We then see that all chemical potentials are equal at equilibrium, consistent with statistical ther-
modynamics [49]. Using Eq. (5.47), we find P eq

A (ξ) to be

P eq
A (ξ) =

eβΛ/n+1

N
q∗A(ξ), (C.9)

and using Eq. (5.48) with Eq. (5.32) and Eq. (5.33), we find each P tot,eq
Bj

to be

P tot,eq
Bj

=
eβΛ/n+1

N
qAe

−β∆Ψ0j . (C.10)

Recall that qA is the integral of q∗A(ξ) over all ξ. In order to solve for the Lagrange multiplier Λ we
apply the conservation requirement Eq. (5.36), to obtain

eβΛ/n+1

N
qA +

M∑
j=1

eβΛ/n+1

N
qAe

−β∆Ψ0j = 1, (C.11)

which is then rearranged to solve for the entire factor

eβΛ/n+1

N
=

1

qA

1

1 +
∑M

j=1 e
−β∆Ψ0j

. (C.12)

Substitution of this factor into Eq. (C.9) results in Eq. (5.38), and substitution into Eq. (C.10)
results in Eq. (5.39).

C.2.2 Retrieving the stress

Starting from the hyperelastic form of the stress given in Eq. (5.57), here we retrieve the form of
the stress in Eq. (5.59). To begin, we consider the evolution of the probability distributions due to
the deformation from Eq. (5.40),

∂PA(ξ; t)

∂t

∣∣∣∣
F

= − ∂

∂ξ
·
[
ξ̇A(ξ; t)PA(ξ; t)

]
, (C.13)

and from Eq. (5.43), we have more simply

∂P tot
Bj

(t)

∂t

∣∣∣∣∣
F

= 0. (C.14)
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We now integrate by parts using an extension of the divergence theorem, neglecting the probability
of intact chains existing on the boundary PA(ξ; t)|∂ξ ≈ 0 as we have previously discussed near the
end of Sec. 5.2.1,∫∫∫

∂

∂ξ
·
[
ξ̇A(ξ; t)PA(ξ; t)

]
µ∗A(ξ; t) d3ξ = −

∫∫∫
PA(ξ; t)

∂µ∗A(ξ; t)

∂ξ
· ξ̇A(ξ; t) d3ξ. (C.15)

Next, we make the affine assumption ξ̇A(ξ; t) = L(t) · ξ, which is that the end-to-end vectors ξ are
affinely deformed by the deformation gradient F(t) on average. Upon carrying out the derivatives
involved in Eq. (5.57), the stress is

σ(t) = n

∫∫∫
PA(ξ; t)

∂µ∗A(ξ; t)

∂ξ
ξ d3ξ − p(t)1. (C.16)

The affine assumption allows us to expand Eq. (C.13), where the divergence of ξ̇A(ξ; t) is zero since
1 : L(t) = 0 due to incompressibility, leaving only the term containing the gradient of PA(ξ; t). We
substitute this nonzero term into the evolution equation for PA(ξ; t) in Eq. (5.40) to obtain

∂PA(ξ; t)

∂t
= −

[
∂PA(ξ; t)

∂ξ
ξ

]
: L(t)−

M∑
j=1

k′j(ξ)

[
PA(ξ; t)−

P tot
Bj

(t)

P tot,eq
Bj

P eq
A (ξ)

]
, (C.17)

which is Eq. (5.58) in the manuscript. The stress in Eq. (C.16) can be written as a function of the
time-independent Helmholtz free energy of an intact chain ψ∗A(ξ) rather than the time-dependent
corresponding chemical potential µ∗A(ξ; t). The chemical potential of an intact chain µ∗A(ξ; t) is
given by Eq. (5.47) in terms of the partition function q∗A(ξ) and the probability distribution PA(ξ; t).
The principal thermodynamic connection formula allows the partition function to be written as a
function of the Helmholtz free energy,

q∗A(ξ) = e−βψ
∗
A(ξ), (C.18)

so we then expand the gradient of µ∗A(ξ; t) in Eq. (5.47) as

∂µ∗A(ξ; t)

∂ξ
=
∂ψ∗A(ξ)

∂ξ
+

bT

PA(ξ; t)

∂PA(ξ; t)

∂ξ
. (C.19)

Substitution of the second term in Eq. (C.19) into the stress Eq. (C.16) results in

σ(t) = n

∫∫∫
PA(ξ; t)

∂ψ∗A(ξ)

∂ξ
ξ d3ξ + nbT

∫∫∫
∂PA(ξ; t)

∂ξ
ξ d3ξ − p(t)1. (C.20)

The second term in Eq. (C.20) is simplified by again using integration by parts and PA(ξ; t)|∂ξA ≈ 0,

nbT

∫∫∫
∂PA(ξ; t)

∂ξ
ξ d3ξ = −nbTP tot

A (t)1. (C.21)

The pressure term in Eq. (C.20) and this term in Eq. (C.21) are both spherical. Since the pressure
p(t) is merely a Lagrange multiplier enforcing incompressibility, we take p(t) + nbTP tot

A (t) 7→ p(t)
without loss of generality. The stress in Eq. (C.20) is then

σ(t) = n

∫∫∫
PA(ξ; t)

∂ψ∗A(ξ)

∂ξ
ξ d3ξ − p(t)1, (C.22)
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which is Eq. (5.59) in the manuscript. This stress is then nondimensionalized as follows: we first
rearrange the pressure term and scale by β/n for

σ(t) + p(t)1

β/n
=

∫∫∫
PA(ξ; t)

∂βψ∗A(ξ)

∂ξ
ξ d3ξ. (C.23)

Next, we substitute in ξ = Nb`bγ, using PA(γ; t) ≡ (Nb`b)
3PA(ξ; t) and then PA(ξ; t) d3ξ =

PA(γ; t) d3γ,

σ(t) + p(t)1

β/n
=

∫∫∫
PA(γ; t)

∂βψ∗A(γ)

∂γ

(
γγ

γ

)
d3γ. (C.24)

We then substitute in βψ∗A(γ) = Nbϑ
∗
A(γ), where η(γ) = ∂ϑ∗A(γ)/∂γ, to obtain Eq. (5.76). When

an inhomogeneous chain (consists of both breakable and unbreakable links) is used for the uFJC
model, the homogeneous chain contour length transforms, Nb`b 7→ (Nb + ςN#

b )`b. To adjust our
nondimensional representation of the stress in Eq. (5.76), we must then transform γ using Nbγ 7→
(Nb + ςN#

b )γ, where PA(γ; t) d3γ is invariant. The net result within Eq. (5.76) is effectively

Nb

(
γγ

γ

)
7→
(
Nb + ςN#

b

)(γγ
γ

)
, (C.25)

which taken within Eq. (5.76) produces Eq. (5.80).

C.2.3 Expressing the chemical dissipation

Starting from Eq. (5.53), here we retrieve the form of the dissipation due to the chemical reactions
Drxn(t) that allows us to conclude Drxn(t) ≥ 0. We begin by expanding Eq. (5.53),

Drxn(t) = −n
∫∫∫

∂PA(ξ; t)

∂t

∣∣∣∣
rxn

µ∗A(ξ; t) d3ξ − n
M∑
j=1

∂P tot
Bj

(t)

∂t

∣∣∣∣∣
rxn

µBj(t). (C.26)

It is possible to write the time derivatives and chemical potentials in Eq. (C.26) strictly in terms of
the original forward and reverse reactions rates, R′j(ξ; t) and R′′j (ξ; t). Referring back to Eq. (5.15),
we first write

∂PA(ξ; t)

∂t

∣∣∣∣
rxn

= −
M∑
j=1

[
R′j(ξ; t)−R′′j (ξ; t)

]
. (C.27)

Similarly with Eq. (5.43), we use Rj(ξ; t) = k′j(ξ)PA(ξ; t) from Eq. (5.24) to write

∂P tot
Bj

(t)

∂t

∣∣∣∣∣
rxn

=

∫∫∫ [
R′j(ξ; t)− k′j(ξ)P eq

A (ξ)
P tot

Bj
(t)

P tot,eq
Bj

]
d3ξ. (C.28)

Next, we use Eq. (5.28) for k′j(ξ)P eq
A (ξ) = k′′j (ξ)P eq

Bj
(ξ). We then use Eq. (5.35) to simplify

P eq
Bj

(ξ)
P tot

Bj
(t)

P tot,eq
Bj

= P eq
Bj

(ξ)
VBjPBj(ξ; t)

VBjP
eq
Bj

(ξ)
= PBj(ξ; t), (C.29)
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which with R′′j (ξ; t) = k′′j (ξ)PBj(ξ; t) from Eq. (5.25) allows us to obtain

∂P tot
Bj

(t)

∂t

∣∣∣∣∣
rxn

=

∫∫∫ [
R′j(ξ; t)−R′′j (ξ; t)

]
d3ξ. (C.30)

With Eqs. (C.27) and (C.30), the dissipation in Eq. (C.26) now becomes

Drxn(t) = n

M∑
j=1

∫∫∫ [
R′j(ξ; t)−R′′j (ξ; t)

] [
µ∗A(ξ; t)− µBj(t)

]
d3ξ (C.31)

Using both Eq. (5.47) and Eq. (5.48), we obtain the difference between the chemical potentials

µ∗A(ξ; t)− µBj(t) = bT ln

[
q∗Bj

q∗A(ξ)

PA(ξ; t)

P tot
Bj

(t)/VBj

]
. (C.32)

After noting q∗Bj/q
∗
A(ξ) = k′j(ξ)/k′′j (ξ) using Eq. (5.28) and P tot

Bj
(t)/VBj = PBj(ξ; t) using Eq. (5.35),

µ∗A(ξ; t)− µBj(t) = bT ln

[
k′j(ξ)PA(ξ; t)

k′′j (ξ)PBj(ξ; t)

]
, (C.33)

which with Eq. (5.24) and Eq. (5.24) allows us to obtain

µ∗A(ξ; t)− µBj(t) = bT ln

[R′j(ξ; t)

R′′j (ξ; t)

]
. (C.34)

Combining Eqs. (C.31) and (C.34), we can then write the total dissipation Drxn succinctly as

Drxn(t) =
M∑
j=1

∫∫∫
D∗j (ξ; t) d3ξ, (C.35)

where D∗j (ξ; t), the dissipation density for the jth reaction occurring at the end-to-end vector ξ, is

D∗j (ξ; t) ≡ nbT
[
R′j(ξ; t)−R′′j (ξ; t)

]
ln

[R′j(ξ; t)

R′′j (ξ; t)

]
. (C.36)

Eqs. (C.35) and (C.36) are Eqs. (5.60) and (5.61) in the manuscript, respectively. The right-hand
side of Eq. (C.35) is of the form c(x − y) ln(x/y), which is a quantity that is positive semidefinite
for all x > 0 and y > 0 if c ≥ 0. Since the reactions rates R′j(ξ; t) and R′′j (ξ; t) are both positive
definite, we have [R′j(ξ; t)−R′′j (ξ; t)] ln[R′j(ξ; t)/R′′j (ξ; t)] ≥ 0. For finite temperatures we also have
nbT > 0, which with Eq. (C.36) then allows us to conclude that each D∗j (ξ; t) ≥ 0, and therefore
with Eq. (C.35) that Drxn(t) ≥ 0.

C.3 Extended details on implementing the uFJC model

C.3.1 Asymptotic approximation for the uFJC model

Here we obtain an asymptotic approximation for the single-chain mechanical response of the uFJC
model. For nondimensional end-to-end lengths γ near and below unity, the mechanical response will
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closely match that of the EFJC (harmonic u) if κ� 1. Physically, κ� 1 represents that thermal
energy is much smaller than the characteristic energy to begin stretching the link, so thermal
sampling will be effectively restricted to where u is minimized, which is also where u is harmonic.
If the force remains small enough, η � 1, nondimensional end-to-end lengths above unity will not
be reached. The analytic expression we use for the single-chain mechanical response of the EFJC
in the Gibbs (isotensional) ensemble is [57]

γEFJC(η) = L(η) +
η

κ

[
1 +

1− L(η) coth(η)

1 + (η/κ) coth(η)

]
, (C.37)

where L(η) = coth(η) − 1/η is the Langevin function. Since we will utilize κ � 1 in order to
asymptotically approximate the mechanical response of the uFJC, we will expand Eq. (C.37) in a
series that is valid as κ→∞. Using the Maclaurin series for 1/(1 + x), we then have

γEFJC(η) = L(η) +
η

κ

{
2− L(η) coth(η) + [1− L(η) coth(η)] η coth(η)

∞∑
n=1

(−κ)−n

}
as κ→∞.

(C.38)
Now, we choose to make a first-order asymptotic approximation, only keeping O(κ−1) terms,

γEFJC(η) ∼ L(η) +
η

κ
[2− L(η) coth(η)] for κ� 1. (C.39)

For sufficiently low forces, η � 1, the mechanical response of the uFJC matches that of the EFJC
with the same stiffness since in either case the link stretching will be restricted to the harmonic
regime. Eq. (C.39) is then the O(κ−1) asymptotic approximation of the single-chain mechanical
response of the uFJC for η � 1,

γ(η) ∼ L(η) +
η

κ
[2− L(η) coth(η)] for κ� 1 and η � 1. (C.40)

Now, for κ � 1 and γ & 1 the uFJC will remain aligned and the links will begin to be stretched
directly. As γ continues to increase, the corresponding large forces required, η � 1, will be approx-
imately due to stretching the links alone. In other words, the forces required to significantly stretch
the stiff links will eclipse the entropically-based forces. In this limit the mechanical response of the
chain is asymptotically given by that of the links,

γ(η) ∼ λ(η) for κ� 1 and η � 1, (C.41)

where λ(η) is the stretch `/`b of a link under the nondimensional force η, defined through

η = β`b
∂u(`)

∂`

∣∣∣∣
`=`bλ(η)

. (C.42)

We then have two asymptotic approximations when κ� 1 for the mechanical response in Eqs. (C.40)
and (C.41) that we must match. We may do so using Prandtl’s method of asymptotic matching
[146, 205], which stipulates that the following must be true to obtain a composite approximation:

lim
η→∞

γη�1(η) = lim
η→0

γη�1(η). (C.43)
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Here the limits are 1 + η/κ in either case, thus we satisfy Eq. (C.43). Prandtl’s method also
stipulates that this limit must be subtracted from the composite solution obtained when adding
the two approximations, otherwise it would be accounted for twice. After subtracting this common
part of 1 + η/κ, we obtain the composite first-order asymptotic approximation

γ1(η) ∼ L(η) +
η

κ
[1− L(η) coth(η)] + λ(η)− 1 for κ� 1. (C.44)

This mechanical response has three distinct terms. The first, L(η), is the entropic mechanical
response of the FJC that dominates at low forces. The third, λ(η)−1, is based upon the mechanical
response of the aligned chain λ(η) that dominates at high forces. After noting that∣∣∣η[1− L(η) coth(η)]

∣∣∣ ≤ 1 for all η, (C.45)

we see that the second term in Eq. (C.44) is essentially an O(κ−1) correction. If κ is sufficiently
high, this correction is negligible and we may take the even simpler (leading-order) approximation

γ0(η) ∼ L(η) + λ(η)− 1 for κ� 1, (C.46)

which is the asymptotic approximation utilized in Eq. (5.64) of the manuscript.
When applying the Morse potential to the uFJC model mechanical response in Eq. (C.46), with

link potential energy u(`) given by Eq. (5.66), we first compute the link force

f =
∂u(`)

∂`
=
√

2kbub e
−
√
kb/2ub(`−`b)

[
1− e−

√
kb/2ub(`−`b)

]
, (C.47)

and afterward nondimensionalize (η ≡ βf`b, κ ≡ βkb`
2
b , λ ≡ `/`b) to obtain the nondimensional

force

η =
√

2κβub e
−
√
κ/2βub[λ(η)−1]

{
1− e−

√
κ/2βub[λ(η)−1]

}
. (C.48)

We then choose the transition state stretch λ‡ ≡ 1 + ln(2)
√

2βub/κ corresponding to the maximum

force ηmax =
√
κβub/8. Solving Eq. (C.48) for λ(η), we then obtain

λ(η) = 1 +

√
2βub
κ

ln

[
2

1 +
√

1− η/ηmax

]
for η ≤ ηmax =

√
κβub

8
, (C.49)

which is Eq. (5.67) from the manuscript. We plot the leading order O(κ0) and first-order corrected
O(κ−1) asymptotic approximations of the mechanical response from Eqs. (C.44) and (C.46) for the
Morse-FJC for varying κ in Fig. C.1(a). We found that varying βub has little effect on the accuracy
of the approximation of the mechanical response. Fig. C.1(a) shows that the O(κ−1) correction
provides a small contribution for κ = 20, a nearly negligible contribution for κ = 50, and essentially
no contribution for κ = 200 and above. Higher order corrections may be obtained, but if the O(κ−1)
correction is negligible, these will surely be negligible. Going forward (and in the manuscript), we
choose Eq. (C.46) as the asymptotic approximation of the mechanical response γ(η) and treat the
O(κ−1) correction from Eq. (C.44) as an estimate of the error. The relative error e ≡ |γ1 − γ0|/γ1

would then be

e(η) ∼ (η/κ) [1− L(η) coth(η)]

γ1(η)
for κ� 1. (C.50)
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Figure C.1: (a) The nondimensional force η = βf`b as a function of the leading order (solid) and first-order
corrected (dashed) asymptotic approximations of the corresponding nondimensional end-to-end length γ = ξ/Nb`b
using the Morse-FJC model for βub = 25 and varying κ. (b) The maximum relative error max[e(η)] for βub = 25
and varying κ.

We plot the maximum (over η) of this relative error in Fig. C.1(b) as a function of κ. For smaller
κ the maximum relative error can be quite large, indicating that the O(κ−1) correction is (and
perhaps higher order corrections are) necessary. As κ increases the maximum relative error rapidly
shrinks, showing that it indeed becomes accurate to ignore the O(κ−1) correction (and all higher
order corrections) and utilize the Eq. (C.46) as the asymptotic approximation of the mechanical
response γ(η).

C.3.2 Obtaining various single-chain quantities for the uFJC model

Here we provide a full derivation of the single-chain quantities for the uFJC model leading up to
the reaction rate coefficient function k′(γ) in Eq. (5.71). We begin with the nondimensional config-
urational Helmholtz free energy per link ϑ∗A,con(γ), which under the Gibbs-Legendre approximation
[125] may be obtained from the mechanical response γ(η) via

ϑ∗A,con(γ) ∼ ηγ(η)−
∫
γ(η) dη for Nb � 1. (C.51)

We then apply our asymptotic approximation for γ(η) in Eq. (5.64) to obtain

ϑ∗A,con(γ) = ln

{
η exp[ηL(η)]

sinh(η)

}
+ βu(η)− c0, (C.52)

where c0 = ln(4π`3
b

√
2π/κ) is the constant of integration [57]. This constant is part of the constant

prefactor of the partition function, and does not appear to produce the correct units in Eq. (5.69)
only because we have scaled away Planck’s constant h = 1. Starting from Eq. (5.69) and continuing
in the following equations, note that functions of γ are often written in terms of η, where η = η(γ)
then represents inverting the mechanical response γ(η) in Eq. (5.64) for the η corresponding to
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γ. Using the principal thermodynamic connection formula, q = e−Nbϑ, the configuration partition
function is

q∗A,con(γ) =

[
`b

√
2π

κ
e−βu(η)

]Nb
q∗FJC,con(γ), (C.53)

where the configuration partition function of the FJC [50] is given by

q∗FJC,con(γ) =

{
4π`2

b sinh(η)

η exp[ηL(η)]

}Nb
. (C.54)

After introducing the nondimensional equilibrium distribution Peq
A (γ) ≡ (Nb`b)

3P eq
A (ξ), Eq. (5.38)

gives Eq. (5.70). The total probability that a chain is intact at equilibrium P tot,eq
A is the first factor

in Eq. (5.70). Note that the momentum contribution q∗A,mom to the partition function q∗A(γ) =
q∗A,momq

∗
A,con(γ) is independent of γ and identical to q∗B,mom, causing it to vanish from Eq. (5.70).

Additionally, note that the constant c0 from Eq. (C.52) cancels when substituting in ϑ∗A,con(γ),
showing c0 is irrelevant (only the relative free energy matters) when computing Peq

A (γ), which is
why c0 does not appear in Eq. (5.69) from the manuscript.

We now turn to the partition function of the transition state q∗‡(γ), which is a chain of Nb − 1
intact links and a single link held rigidly in its transition state. Since our Gibbs-Legendre method
allows us to treat each link independently, we may compute these partition function separately and
multiply them. The transition state link partition function is that of the FJC with `b 7→ `‡, which
also takes η 7→ λ‡η with λ‡ ≡ `‡/`b due to the nondimensionalization. We then have

q∗‡,con(γ) = e−βu(`‡)
{
q∗FJC,con(γ)

∣∣
`b=`‡

q∗A,con(γ)(Nb−1)
}1/Nb

. (C.55)

We then compute the ratio of q∗‡(γ) to q∗A(γ) in order to retrieve the reaction rate coefficient func-
tion k′(γ) from Eq. (5.26). The ratio of the configuration contributions is found using Eqs. (C.53)
and (C.55), where the contributions from the Nb − 1 non-transition state links cancel due to the
link-independence that the Gibbs-Legendre method permits. The ratio of the momentum contribu-
tions similarly cancels except for the momentum degree of freedom from stretching the link. The
contribution from this stretching degree of freedom is equivalent to that from the one-dimensional
translation of the reduced mass ν = m/2 of the link [49], so we then have

q∗‡,mom(γ)

q∗A,mom(γ)
= (2πνbT )−1/2. (C.56)

To obtain k′(γ) from Eq. (5.26), we now multiply the ratio of q∗‡,con(γ) in Eq. (C.55) to q∗A,con(γ) in
Eq. (C.53) by q∗‡,mom(γ)/q∗A,mom(γ) in Eq. (C.56) and simplify. When taking the ratio of q∗‡,con(γ)
to q∗A,con(γ), all contributions from all links cancel except that from the link that may be in the
transition state (analogous to the momentum contribution). After simplifying the ratio of q∗‡,con(γ)
to q∗A,con(γ) through powers of Nb, we have

q∗‡,con(γ)

q∗A,con(γ)
=
e−βu(`‡)

[
q∗FJC,con(γ)|`b=`‡

]1/Nb
q∗A,con(γ)1/Nb

. (C.57)
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The denominator is the partition function of a single uFJC link, while the numerator is the partition
function of a single uFJC link in its transition state, which would then be that of a single FJC link
of length `‡ (and correspondingly higher potential energy u(`‡) due to stretching beyond the rest
length `b). Expanding this result using Eq. (C.53), we obtain

q∗A,con(γ)

q∗‡,con(γ)
= `b

√
2π

κ
e−β[u(`‡)−u(η)]

[
q∗FJC,con(γ)|`b=`‡

q∗FJC,con(γ)

]1/Nb

, (C.58)

which consists of three parts. The first part carries units of length with `b multiplying a unitless√
2π/κ, where the units of length are a direct result of the single additional configurational degree

of freedom (stretching) that a uFJC link has as opposed to the transition state link. The second
part is the exponential function of the potential energy differences. The third part is the ratio of the
FJC configurational partition functions of different lengths (`‡ and `b), purely entropic in nature.
Multiplying Eq. (C.58) by Eq. (C.56), scaling by β = 1/bT and simplifying, we receive the forward
reaction rate coefficient function from Eq. (5.26),

k′(γ) =
1

2π

√
κ

νβ`2
b

e−β[u(`‡)−u(η)]

[
q∗FJC,con(γ)|`b=`‡

q∗FJC,con(γ)

]1/Nb

. (C.59)

Next, we reference classical transition state theory [173] in order to make sense of Eq. (C.59). The
quantity resulting from the square root function has units of frequency, so we define the attempt
frequency ω‡ as

ω‡ ≡
√

1

ν

∂2u

∂`2

∣∣∣∣
`=`b

=

√
κ

νβ`2
b

. (C.60)

We simplify the last term in Eq. (C.59), proportional to the logarithm of the entropy barrier,[
q∗FJC,con(γ)|`b=`‡

q∗FJC,con(γ)

]1/Nb

=
λ‡ sinh(λ‡η) exp[ηL(η)]

sinh(η) exp[λ‡ηL(λ‡η)]
. (C.61)

Combining the entropic and potential energy contributions in Eqs. (C.59) and (C.61), we obtain
the Helmholtz free energy barrier ∆Ψ∗‡(γ) as

∆Ψ∗‡(γ) ≡ u(`‡)− u(η)− bT ln

{
λ‡ sinh(λ‡η) exp[ηL(η)]

sinh(η) exp[λ‡ηL(λ‡η)]

}
. (C.62)
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Writing k′(γ) in Eq. (C.59) in terms of ω‡ and ∆Ψ∗‡(γ), we obtain

k′(γ) =
ω‡
2π

e−β∆Ψ∗‡(γ). (C.63)

Eqs. (C.60)–(C.63) are equivalent to Eqs. (5.71)–(5.72) from the manuscript.

C.4 Solving for the distribution of intact chains

C.4.1 Obtaining and verifying the exact solution

Here we exactly solve Eq. (5.74), the evolution equation for the probability density distribution of
intact chains PA(ξ; t). Our solution is valid for all chain models with a single reaction coordinate
or any number of identical reaction coordinates. Eq. (5.74) in terms of ξ is

∂PA(ξ; t)

∂t
= −

[
∂PA(ξ; t)

∂ξ
ξ

]
: L(t)− k(ξ)

{
PA(ξ; t)− P eq

A (ξ)

P tot,eq
B

[
1−

∫∫∫
PA(ξ̃; t) d3ξ̃

]}
. (C.64)

We begin solving Eq. (C.64) by defining the new variable,

H(ξ; t) ≡ PA [F(t) · ξ; t] e
∫ t
0 k[F(s)·ξ] ds, (C.65)

where H(ξ; 0) = PA(ξ; 0) if F(0) = 1. Substitution of Eq. (C.65) into Eq. (C.64) produces

∂H(ξ; t)

∂t
e−

∫ t
0 k[F(s)·ξ] ds =

k [F(t) · ξ]P eq
A [F(t) · ξ]

P tot,eq
B

{
1−

∫∫∫
H(ξ̃; t) e−

∫ t
0 k[F(s)·ξ̃] ds d3ξ̃

}
. (C.66)

Eq. (C.66) may be rearranged to cause the right-hand side to become a function of time only,

∂H(ξ; t)

∂t

e−
∫ t
0 k[F(s)·ξ] ds

k [F(t) · ξ]P eq
A [F(t) · ξ]

=
1

P tot,eq
B

{
1−

∫∫∫
H(ξ̃; t) e−

∫ t
0 k[F(s)·ξ̃] ds d3ξ̃

}
, (C.67)

≡ρ(t), (C.68)

which we have now defined as ρ(t). We see from the right-hand side of Eq. (C.67) that this function
happens to be ρ(t) = P tot

B (t)/P tot,eq
B . Rearranging and integrating Eq. (C.67), we then retrieve

H(ξ; t) = H(ξ; 0) +

∫ t

0

k [F(τ) · ξ]P eq
A [F(τ) · ξ]

e−
∫ τ
0 k[F(s)·ξ] ds

ρ(τ) dτ, (C.69)

where we now must determine a solution for ρ(t) that is consistent with the solution in Eq. (C.69)
by substituting it back into Eq. (C.67). Our results are simplified by introducing the reaction
propagator Ξ(ξ; t, τ), which we define as

Ξ(ξ; t, τ) ≡ exp

{
−
∫ t

τ

k
[

(t)F(s) · ξ
]
ds

}
, (C.70)
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where the relative deformation [135] is defined as

(t)F(τ) ≡ F(τ) · F−1(t). (C.71)

Next we define the kernel function K(t, τ), which we may rewrite in terms of the reaction propagator
Ξ(ξ; t, τ) using the invariance (due to incompressibility) of d3ξ to the transformation ξ 7→ F−1(t) ·ξ,

K(t, τ) ≡
∫∫∫

k [F(τ) · ξ]P eq
A [F(τ) · ξ]

P tot,eq
B e

∫ t
τ k[F(s)·ξ] ds

d3ξ, (C.72)

=
1

P tot,eq
B

∫∫∫
P eq

A

[
(t)F(τ) · ξ

] ∂Ξ(ξ; t, τ)

∂τ
d3ξ, (C.73)

where K(t, τ > t) ≡ 0. Then we similarly define the right-hand side function

b(t) ≡ 1

P tot,eq
B

{
1−

∫∫∫
H(ξ; 0)e−

∫ t
0 k[F(s)·ξ̃] ds d3ξ

}
, (C.74)

=
1

P tot,eq
B

{
1−

∫∫∫
PA

[
F−1(t) · ξ; 0

]
Ξ(ξ; t, 0) d3ξ

}
. (C.75)

Now, substituting Eq. (C.69) into Eq. (C.67) and simplifying, we obtain the consistency condition

ρ(t) +

∫ t

0

K(t, τ)ρ(τ) dτ = b(t). (C.76)

Eq. (C.76) is a linear Volterra integral equation of the second kind with eigenvalue −1.
We first consider the special case of motions with constant stretch history [134, 135] that have

L = constant, which with F(0) = 1 allow F(t) = etL and therefore (t2)F(t1) = F(t1 − t2) =
F−1(t2 − t1). This allows us to rewrite the kernel K(t, τ) in Eq. (C.73) to be of the convolution
type [206] by depending only on the difference t− τ ,

K(t− τ) =
1

P tot,eq
B

∫∫∫
P eq

A (ξ)k′(ξ)e−
∫ t−τ
0 k[F(s)·ξ] ds d3ξ. (C.77)

Kernels of the convolution type allow Eq. (C.76) to be solved using the Laplace transform L. After
utilizing the convolution theorem twice [207], the solution may be written as

ρ(t) =

∫ t

0

W (t− τ)b(τ) dτ, (C.78)

where the solution kernel (also of the convolution type) is given by

W (t) = L−1

{
1

1 + L[K(t)]

}
. (C.79)

The solution as t → ∞ may be obtained without need for the inverse Laplace transform L−1 and
can be utilized to study the steady-state mechanical response under these special deformations [59].



128 Appendix C. Supporting Information for Chapter 5

For arbitrary incompressible deformation histories, the solution to Eq. (C.76), obtained using
Picard’s method of successive approximations [206, 208], is the Liouville-Neumann series

ρ(t) = b(t) +
∞∑
m=1

(−1)m
∫ t

0

Km(t, τ)b(τ) dτ. (C.80)

The functions Km(t, τ), where we begin with K1(t, τ) ≡ K(t, τ), are defined as

Km(t, τ) ≡
∫ t

τ

K(t, s)Km−1(s, τ) ds. (C.81)

This series solution for ρ(t) allows the solution for PA(ξ; t) and subsequently σ(t) in Eq. (5.59) to
be written as series. This resulting series for σ(t) resembles the general viscoelastic constitutive
equation for the stress of the integral type [134, 135]. However, in our case it is much more practical
to construct PA(ξ; t) and integrate the single term for σ(t) afterward.

The Liouville-Neumann series in Eq. (C.80) converges for some total time interval t ∈ [0, T ] if
the kernel function K(t, τ) is square-integrable [208], which requires

‖K‖2 ≡
∫ T

0

∫ t

0

∣∣K(t, τ)
∣∣2 dτ dt <∞. (C.82)

Since 0 ≤ Ξ(ξ; t, τ) ≤ 1 in Eq. (C.73), we have K ≤ K̂ and thus ‖K‖2 ≤ ‖K̂‖2, where

K̂(t, τ) ≡ 1

P tot,eq
B

∫∫∫
k
[

(t)F(τ) · ξ
]
P eq

A

[
(t)F(τ) · ξ

]
d3ξ, (C.83)

so we may prove Eq. (C.82) by proving ‖K̂‖2 < ∞. We transform ξ 7→ (τ)F(t) · ξ in order to see

that K̂ is not truly a function of t and τ and is more simply

K̂ =
1

P tot,eq
B

∫∫∫
k(ξ)P eq

A (ξ) d3ξ, (C.84)

which means ‖K̂‖2 <∞ is proven for a finite time interval, where 0 < P tot,eq
B < 1 and k(ξ) ∝ k′(ξ),

if the following is true: ∫∫∫
k′(ξ)P eq

A (ξ) d3ξ <∞. (C.85)

If the positive semidefinite functions k′(ξ) and P eq(ξ) are prescribed without considering a chain
model, this relation provides a constraint. On the other hand, if we utilize our statistical mechanical
framework – namely Eqs. (5.26), (5.19), and (5.23) – we see Eq. (C.84) is a requirement that
bTq‡/qB < ∞. This requirement is generally true for finite, nonzero temperatures because of the
following. First, the momentum portions of the partition functions are known exactly and are finite.
Second, the configuration portions in general have an upper bound that is powers of the volume
(zero potential case), which is then finite if the volume is finite. Since the partition functions are
positive-definite for nonzero temperatures and an appropriate Hamiltonian, the proof is complete.
For the specific case of the Morse-FJC we have approximately considered in Sec. 5.3.1, we can
immediately see that it is explicitly true: the integral of q∗‡(ξ) over all end-to-end lengths exists and
is finite and qB = q− qA is a nonzero finite positive number.
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While we have obtained the solution for ρ(t) in Eq. (C.80) and have proven its convergence,
we must now consider error estimates since we cannot sum to infinity in practice, and since it is
unlikely that we will recognize what the series converges to for a given single-chain model. Including
M terms in Eq. (C.80),

ρ(t) = b(t) +
M∑
m=1

(−1)m
∫ t

0

Km(t, τ)b(τ) dτ +RM+1(t), (C.86)

where RM+1(t) is then the residual function. It can be shown [209] that the absolute value of the
residual function in our case is bound by the inequality

|RM+1(t)| ≤
[
max|K(t, τ)|T

]M+1
max|ρ(t)|

(M + 1)!
. (C.87)

The limit of |RM+1(t)| as M → ∞ is then zero, further verifying the convergence of our series
solution in Eq. (C.80). The maximum of K(t, τ) > 0 over all t and τ ≤ t is K̂ in Eq. (C.84), and
the maximum of ρ(t) > 0 is 1/P tot,eq

B since the maximum of P tot
B (t) is unity. Therefore, we may

bound the residual as

|RM+1| ≤
(K̂T )M+1

P tot,eq
B (M + 1)!

. (C.88)

The right-hand side of Eq. (C.88) is then our t-independent estimate for the residual which is
computed once after the full time interval of interest T is specified. This estimate can be scaled by
ρ(t) for an estimate of the relative error at time t. We see two effective timescales – the total time
interval T and the timescale 1/K̂, where K̂ is actually the total reverse reaction rate coefficient.
For T < 1/K̂ (short total time), the residual estimate in Eq. (C.88) rapidly becomes small as M
increases, while for T > 1/K̂ (long total time) the residual estimate may require considerably large
M to become small.

Now that our solution for ρ(t) has been proven and error estimates in summing for it have been
considered, we can go back to Eq. (C.69) and transform back using Eq. (C.65) to finally write the
solution to Eq. (C.64),

PA(ξ; t) = PA

[
F−1(t) · ξ; 0

]
Ξ(ξ; t, 0) +

∫ t

0

P eq
A

[
(t)F(τ) · ξ

] ∂Ξ(ξ; t, τ)

∂τ
ρ(τ) dτ. (C.89)

Substitution of this solution back into Eq. (C.64) for verification shows that the first term in
Eq. (C.89) is the homogeneous solution and the second term is the particular solution. For further
verification, substitution of the solution Eq. (C.89) into the conservation requirement Eq. (5.73)
retrieves again the integral equation for ρ(t) = P tot

B (t)/P tot,eq
B from Eq. (C.76). As a final check,

substitution of the solution Eq. (C.89) into the evolution equation for broken chains Eq. (5.43)
retrieves (after simplifying and integrating the resulting ordinary integro-differential equation) the
integral equation from Eq. (C.76) yet again. The homogeneous solution accounts for the decay
of the initial distribution of chains as it is deformed and chains break. The particular solution
accounts for broken chains reforming in time throughout the deformation history, which is why its
integrand (a rate of reforming) is proportional to the total probability of broken chains through
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ρ(t) = P tot
B (t)/P tot,eq

B . If the reaction propagator Ξ(ξ; t, τ) is treated as independent of end-to-end
vector Ξ(t, τ) and instead constitutively prescribed, the integral of Eq. (C.89) over all end-to-end
vectors for P tot

A (t) resembles many recent models for the total number of intact bonds in a dynamic
network [163, 166–168, 170, 172].

If the system is initially equilibrated before t = 0, which is PA(ξ; t ≤ 0) = P eq
A (ξ) and F(t ≤

0) = 1, we may use integration by parts and ρ(t ≤ 0) = 1 to rewrite Eq. (C.89) as a single term,

PA(ξ; t) =

∫ t

−∞
P eq

A

[
(t)F(τ) · ξ

] ∂Ξ(ξ; t, τ)

∂τ
ρ(τ) dτ, (C.90)

which is equivalent to the solution from Eq. (5.75) of the manuscript.

C.4.2 Objectivity of the stress

Here we show that the relation for the Cauchy stress σ(t) in Eq. (5.59) obtained when substituting
in the solution for PA(ξ; t) from Eq. (C.89) is objective. Under rigid rotations of the frame of
reference [135], the relation for σ(t) (if objective) in the new frame is given by

σ′(t) = Q(t) · σ(t) ·QT (t), (C.91)

where Q(t) is a time-dependent orthogonal rotation tensor, i.e. Q−1(t) = QT (t) and det(Q) = ±1.
The deformation gradient F(t) is not an objective tensor, and is instead a double vector:

F′(t) = Q(t) · F(t) ·QT (0). (C.92)

The end-to-end vector ξ is a time-independent reference coordinate with ξ′ = Q(0) · ξ. While ξ is
not objective, the deformed coordinate F(t) · ξ is objective: in the new frame it is given by

[F(t) · ξ]′ = Q(t) · [F(t) · ξ] . (C.93)

We can utilize this objective vector within the stress in Eq. (5.59) by taking ξ → F(t) · ξ in
the integrand, where the element of integration is invariant to this transformation due to the
incompressible deformation, and where f(ξ) ≡ ∂ψ∗(ξ)/∂ξ is the force. The result is

σ(t) = n

∫∫∫
PA [F(t) · ξ; t] f [F(t) · ξ]

[
F(t) · ξξT · FT (t)

‖F(t) · ξ‖2

]
d3ξ − p(t)1. (C.94)

Note that we have assume that the single-chain model is spherically-symmetric in ξ. Since F(t) · ξ
is an objective vector, its norm ‖F(t) · ξ‖2 is an objective scalar, which means that it is entirely
invariant to rigid rotations of the frame of reference. This is made clear as follows: the norm is

‖F(t) · ξ‖2 =
√
ξT ·C(t) · ξ, (C.95)

where C(t) = FT (t) · F(t) is the right Cauchy-Green strain tensor. Using Eq. (C.92), C(t) in new
frame is given by Q(0) ·C(t) ·QT (0), and we then have the invariant quantity[

ξT ·C(t) · ξ
]′

= ξT ·QT (0) ·Q(0) ·C(t) ·QT (0) ·Q(0) · ξ = ξT ·C(t) · ξ, (C.96)

which means that ‖F(t) · ξ‖2 is invariant. Consequently, all spherically-symmetric scalar functions
with argument F(t)·ξ are also invariant; this is also true for the cases where the deformed coordinate
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is parameterized by τ or s. Thus, in Eq. (C.94), not only is ‖F(t) · ξ‖2 invariant but f [F(t) · ξ] is
also invariant. We will next show that PA [F(t) · ξ; t] is invariant using the invariance of spherically-
symmetric scalar functions with argument F(t) · ξ. The kernel function K(t, τ) in Eq. (C.73) when
using ξ → F(t) · ξ is rewritten as

K(t, τ) =
1

P tot,eq
B

∫∫∫
P eq

A [F(τ) · ξ] k [F(τ) · ξ] e−
∫ t
τ k[F(s)·ξ] ds d3ξ. (C.97)

Since P eq
A (ξ) and k(ξ) are both spherically-symmetric, each of their instances in this relation for

the kernel are invariant. Similarly, for the right-hand side function b(t) in Eq. (C.75) we can write

b(t) =
1

P tot,eq
B

{
1−

∫∫∫
PA(ξ; 0) e−

∫ t
0 k[F(s)·ξ] d3ξ

}
, (C.98)

which is then invariant as long as the initial distribution PA(ξ; 0) is spherically-symmetric, which is
true if it is the equilibrium distribution P eq

A (ξ). Since the solution for ρ(t) in Eq. (C.80) is entirely
related to K(t, τ) and b(t), it is also invariant. The solution for PA [F(t) · ξ; t] using Eq. (C.89) is

PA [F(t) · ξ; t] = PA(ξ; 0)e−
∫ t
0 k[F(s)·ξ] +

∫ t

0

P eq
A [F(τ) · ξ] k [F(τ) · ξ] e−

∫ t
τ k[F(s)·ξ] ds ρ(τ) dτ, (C.99)

and since each function here on the right-hand side is invariant, PA [F(t) · ξ; t] is invariant. We now
refer back to Eq. (C.94) and apply the rigid rotation via Q(t), where we have shown each scalar
function within the integrand is invariant. The result is

σ′(t) =n

∫∫∫
PA [F(t) · ξ; t] f [F(t) · ξ]

[
Q(t) · F(t) · ξξT · FT (t) ·QT (t)

‖F(t) · ξ‖2

]
d3ξ − p(t)1, (C.100)

=Q(t) ·
{
n

∫∫∫
PA [F(t) · ξ; t] f [F(t) · ξ]

[
F(t) · ξξT · FT (t)

‖F(t) · ξ‖2

]
d3ξ − p(t)1

}
·QT (t),

(C.101)

=Q(t) · σ(t) ·QT (t), (C.102)

which shows that σ(t) is indeed an objective tensor.

C.4.3 Computational considerations

We recognize that as the current time t grows, it becomes computationally prohibitive to store
certain quantities (such as the reaction propagator) over the entire history. Fortunately, we are
able to rewrite our solution at t in terms of the solution at any previous time, which allows us to
periodically reset and resolve in order to satisfy memory requirements. For an intermediate time ti
obeying 0 ≤ τ ≤ ti ≤ t, the reaction propagator has the property

Ξ(ξ; t, τ) = Ξ(ξ; t, ti) Ξ
[

(t)F(ti) · ξ; ti, τ
]
. (C.103)
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This property allows the solution in Eq. (C.89) at time t to be written in terms of the solution at
an intermediate time 0 ≤ ti ≤ t and the history from ti to t,

PA(ξ; t) = PA

[
(t)F(ti) · ξ; ti

]
Ξ(ξ; t, ti) +

∫ t

ti

P eq
A

[
(t)F(τ) · ξ

] ∂Ξ(ξ; t, τ)

∂τ
ρ(τ) dτ. (C.104)

When applying Eq. (C.103) to the solution for ρ(t) in Eq. (C.80), two adjustments must be made.
First, the bounds of integration in Eq. (C.80) must be τ ∈ [ti, t]. Second, b(t) in Eq. (C.75) must
be rewritten as

b(t) =
1

P tot,eq
B

{
1−

∫∫∫
PA

[
(t)F(ti) · ξ; ti

]
Ξ(ξ; t, ti) d

3ξ

}
. (C.105)

Next, we note that it is most computationally expedient to compute ρ(t) in Eq. (C.80) by performing
successive approximations [209]. This is as opposed to computing, storing, integrating, and summing
each of the M functions Km(t, τ)b(τ), which is more computationally expensive. After starting with
ρ0(t) ≡ b(t) and computing K(t, τ), storing both b(t) and K(t, τ), we successively approximate the
solution ρ(t) by iterating

ρM(t) = b(t)−
∫ t

0

K(t, τ)ρM−1(τ) dτ. (C.106)

To computationally obtain the solution as ρ(t) = limM→∞ ρM(t), we take finite M such that the
residual in Eq. (C.88) falls below some specified tolerance. Finally, we note that exploiting the
symmetries of PA(ξ; t) that are preserved over the deformation history additionally serves to alleviate
computation expense when computing the integrals over ξ. The uFJC model we utilize here is
spherically-symmetric (only depend on ‖ξ‖2 = ξ), allowing many integrals to be reduced to one-
dimensional integrals over the scalar end-to-end length ξ. For example, Eq. (C.85) for spherically-
symmetric single-chain models is reducible to∫∫∫

k′(ξ)P eq
A (ξ) d3ξ = 4π

∫ ∞
0

k′(ξ)P eq
A (ξ) ξ2 dξ. (C.107)

While the time-independent single-chain functions will always retain their symmetry, the distribu-
tion PA(ξ; t) will in general not. Fortunately, many deformation histories of interest will preserve a
portion of the original spherical symmetry: when applying uniaxial tension (not necessarily mono-
tonic), where the relative deformation is given by

(t)F(τ) =


F11(τ)
F11(t)

0 0

0
[
F11(t)
F11(τ)

]1/2

0

0 0
[
F11(t)
F11(τ)

]1/2

 , (C.108)

the angular symmetry about the ξ1-axis is preserved. This is made clear after writing
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∥∥
(t)F(τ) · ξ

∥∥
2

=

{[
F11(τ)

F11(t)

]2

ξ2
1 +

F11(t)

F11(τ)

(
ξ2

2 + ξ2
3

)}1/2

, (C.109)

=

{[
F11(τ)

F11(t)

]2

z2 +
F11(t)

F11(τ)
r2

}1/2

, (C.110)

where z ≡ ξ1 and r ≡ (ξ2
2 + ξ2

3)1/2 are the height and radius in cylindrical coordinates. Physically,
the deformation stretches a sphere into a spheroid, which is symmetric about the z-axis along which
the deformation is directed. We then write each single chain function in terms of z and r rather
than simply ξ, such as P eq

A (z, r) ≡ P eq
A [(z2 + r2)1/2]. After doing so we simplify each of the three-

dimensional integrals over ξ into two-dimensional integrals over z and r; note that we also exploit
the symmetry about the z-plane. For example: for an initially-equilibrated system, the right-hand
side function b(t) from Eq. (C.75) is

b(t) ≡ 1

P tot,eq
B

{
1−

∫∫∫
P eq

A

[
F−1(t) · ξ

]
Ξ(ξ; t, 0) d3ξ

}
, (C.111)

=
1

P tot,eq
B

1− 4π

∫ ∞
0

r dr

∫ ∞
0

dz P eq
A

[
F−1

11 (t)z, F
1/2
11 (t)r

]
e
−
∫ t
0 ds k

[
F11(s)
F11(t)

z,

[
F11(t)
F11(s)

]1/2
r

] .

(C.112)

The kernel function K(t, τ) simplifies similarly, allowing ρ(t) and afterward PA(ξ; t) to be evaluated
with less computational expense. Further, PA(ξ; t) too retains a symmetry about ξ1, which allows
the stress in Eq. (5.59) to also be written in terms of a two-dimensional integral over z and r:

σ11(t) = 2πn

∫ ∞
0

r dr

∫ ∞
0

dz PA(z, r; t) f(z, r)
2z2 − r2

(z2 + r2)1/2
. (C.113)

Note that we have also applied the traction-free boundary conditions and correspondingly solved
for the pressure p(t) in order to obtain Eq. (C.113).

C.4.4 Special cases

As we discussed in Sec. 5.4.1 and observed in Figs. 5.4–5.5, the reaction rate coefficient function
k′(ξ) often behaves as being constant at its initial value k′(0) before suddenly becoming infinite
beyond some critical extension ξc. For the net reaction rate coefficient function k(ξ) = Nbk

′(ξ), this
is more specifically

k(ξ) ∼
{
k0, ξ ≤ ξc,

∞, ξ > ξc.
(C.114)

Applying this approximation to the reaction propagator Ξ(ξ; t, τ) in Eq. (C.70), we obtain

Ξ(ξ; t, τ) ∼ Θ(ξ; t, τ)e−k0(t−τ) and
∂Ξ(ξ; t, τ)

∂τ
∼ Θ(ξ; t, τ)k0e

−k0(t−τ), (C.115)
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where the yield function Θ(ξ; t, τ) is defined as

Θ(ξ; t, τ) ≡
{

1,
∥∥

(t)F(s) · ξ
∥∥

2
≤ ξc ∀s ∈ [τ, t],

0, otherwise.
(C.116)

The yield function accounts for chains that have been broken via extension past ξc by assigning
zero to any vector F−1(t) · ξ being sampled in P eq

A [F−1(t) · ξ] that was outside or deformed outside
the yield surface at ‖ξ‖2 = ξc during the deformation history. With Eq. (C.115), our solution for
the distribution of intact chains PA(ξ; t) from Eq. (C.90) becomes

PA(ξ; t) =

∫ t

−∞
P eq

A

[
(t)F(τ) · ξ

]
Θ(ξ; t, τ)k0e

−k0(t−τ) ρ(τ) dτ. (C.117)

This special case is transient chain breaking combined with a finite critical extension.

Rate-independent irreversible breaking

Applying Eq. (C.115) to our solution for the distribution of intact chains PA(ξ; t) from Eq. (C.89),

PA(ξ; t) =PA

[
F−1(t) · ξ; 0

]
Θ(ξ; t, 0)e−k0(t−τ) (C.118)

+

∫ t

0

P eq
A

[
(t)F(τ) · ξ

]
Θ(ξ; t, τ)k0e

−k0(t−τ) ρ(τ) dτ.

We assume that the distribution is initially equilibrated, and then Eq. (C.118) is equivalent to
Eq. (C.117). Now, we consider the special case where k0 ≈ 0, which simplifies Eq. (C.118) to

PA(ξ; t) = P eq
A

[
F−1(t) · ξ

]
Θ(ξ; t, 0). (C.119)

Eq. (C.119) is equivalent to Eq. (5.81) from the manuscript and is the special case of the rate-
independent irreversible breaking of chains.

Transient breaking

Next, we consider the special case where ξc →∞ but k0 > 0, where Eq. (C.117) becomes

PA(ξ; t) =

∫ t

−∞
P eq

A

[
(t)F(τ) · ξ

]
k0e
−k0(t−τ) dτ. (C.120)

Eq. (C.120) is equivalent to Eq. (5.84) from the manuscript and is the special case where chains
constantly break and reform, i.e. the transient network model. Note that an infinitely-extensible
single-chain model (such as the ideal or EFJC models) must be utilized since ξc → ∞. Also note
that we have taken ρ(t) = 1 within the solution in Eq. (C.120), which means that the total number
of intact chains P tot

A (t) remains constant at P tot,eq
A for all time. This can be verified by integrating

Eq. (5.74) over ξ with k(ξ) = k0 for an initially-equilibrated system. Integrating Eq. (C.120) over
ξ additionally will show that P tot

A (t) = P tot,eq
A for all time as long as P tot

A (0) = P tot,eq
A . Further,

we point out that k(ξ) = k0 is likely the only way to guarantee that the fraction of intact chains
remains constant at its equilibrium value. For this to be true, we must have ρ(t) = 1 as well as
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P tot
A (t) = P tot,eq

A . Considering Eq. (C.76) with ρ(t) = 1, we reference Eq. (C.73) for K(t, τ) and
Eq. (C.75) for b(t) in simplifying the following:

∫ t

0

K(t, τ) dτ =
1

P tot,eq
B

∫ t

0

∫∫∫
P eq

A

[
(t)F(τ) · ξ

] ∂Ξ(ξ; t, τ)

∂τ
d3ξ dτ,

(C.121)

=
1

P tot,eq
B

∫ t

0

∫∫∫ (
∂

∂τ

{
P eq

A

[
(t)F(τ) · ξ

]
Ξ(ξ; t, τ)

}
− Ξ(ξ; t, τ)

∂

∂τ
P eq

A

[
(t)F(τ) · ξ

])
d3ξ dτ,

(C.122)

=
1

P tot,eq
B

∫∫∫ (
P eq

A (ξ)− P eq
A

[
F−1(t) · ξ

]
Ξ(ξ; t, 0)−

∫ t

0

Ξ(ξ; t, τ)
∂

∂τ
P eq

A

[
(t)F(τ) · ξ

]
dτ

)
d3ξ,

(C.123)

= b(t)− 1− 1

P tot,eq
B

∫ t

0

∫∫∫
Ξ(ξ; t, τ)

[
∂P eq

A (ξ)

∂ξ

∣∣∣∣
ξ=(t)F(τ)·ξ

· L(τ) · (t)F(τ) · ξ
]
d3ξ dτ.

(C.124)

We can alternatively arrive at this result by integrating Eq. (C.89) over all ξ, setting both ρ(t) = 1
and P tot

A (t) = P tot,eq
A , and similarly simplifying. Substituting Eq. (C.124) into Eq. (C.76), we find

in general that P tot
A (t) = P tot,eq

A is only satisfied when

∫ t

0

∫∫∫
exp

{
−
∫ t

τ

k
[

(τ)F(s) · ξ
]
ds

}[
∂P eq

A (ξ)

∂ξ
· L(τ) · ξ

]
d3ξ dτ = 0. (C.125)

This condition may also be retrieved through simplifying the spatial integral of Eq. (C.90) with
ρ(t) = 1 and setting the result equal to P tot,eq

A . While Eq. (C.125) is indeed satisfied for the
transient network model where k(ξ) = k0, it is unlikely to be satisfied in all the other cases where
k(ξ) is not constant. We therefore find that the transient network model is the only case of our
model where P tot

A (t) can be guaranteed to remain constant at its equilibrium value P tot,eq
A .

C.5 Additional generalizations and extensions

Here we present some additional generalizations and extensions of the theory that were not included
within the original manuscript [148]. The last extension was recently applied in: P. B. Jayathilaka,
T. G. Molley, Y. Haung, M. S. Islam, M. R. Buche, M. N. Silberstein, J. J. Kruzic, and K. A. Kilian.
Force-mediated molecule release from double network hydrogels. Submitted to Chem. Commun.
(2021).
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C.5.1 Multiple non-equivalent reaction pathways

We now consider the more general case of M non-equivalent reaction pathways, proceeding in a
manner similar to Sec. C.4.1, but beginning with Eq. (5.58) rather than Eq. (5.74). Eq. (5.58) is

∂PA(ξ; t)

∂t
= −

[
∂PA(ξ; t)

∂ξ
ξ

]
: L(t)−

M∑
j=1

k′j(ξ)
[
PA(ξ; t)− ρj(t)P eq

A (ξ)
]
. (C.126)

where ρj(t) ≡ P tot
Bj

(t)/P tot,eq
Bj

and the forward reaction rate coefficient functions k′j(ξ) are given by

Eq. (5.26). Following each step in Sec. C.4.1 that does not involve solving for ρ(t), and assuming
we begin at equilibrium and k′j(ξ) > 0, we obtain a more general form of the solution in Eq. (C.89),

PA(ξ; t) =PA

[
F−1(t) · ξ; 0

]
Ξ(ξ; t, 0) (C.127)

+

∫ t

0

P eq
A

[
(t)F(τ) · ξ

]
Ξ(ξ; t, τ)

{
M∑
j=1

k′j
[

(t)F(τ) · ξ
]
ρj(τ)

}
dτ,

where the reaction propagator Ξ(ξ; t, τ) is now written as

Ξ(ξ; t, τ) ≡ exp

{
−

M∑
j=1

∫ t

τ

k′j
[

(t)F(s) · ξ
]
ds

}
. (C.128)

Note that for M equivalent reaction pathways, Eq. (C.128) becomes Eq. (C.70) via k(ξ) ≡Mk′(ξ),
and Eq. (C.127) becomes Eq. (C.89) via ρj(t) = ρ(t). We now require M equations for each of the
M unknowns ρj(t), which are given by Eq. (5.43), rewritten here as

∂ρj(t)

∂t
=

1

P tot,eq
Bj

∫∫∫
k′j(ξ)

[
PA(ξ; t)− ρj(t)P eq

A (ξ)
]
d3ξ. (C.129)

Referencing Eq. (C.84), note the total reverse reaction rate coefficients appearing in Eq. (C.129),

K̂j ≡
1

P tot,eq
Bj

∫∫∫
k′j(ξ)P eq

A (ξ) d3ξ. (C.130)

Substitution of the solution for PA(ξ; t) in Eq. (C.127) into Eq. (C.129), after defining the total
forward rates of breaking initially-intact chains scaled by P tot,eq

Bj
,

hj(t) ≡
1

P tot,eq
Bj

∫∫∫
k′j(ξ)PA

[
F−1(t) · ξ; 0

]
Ξ(ξ; t, 0) d3ξ, (C.131)

as well as the kernel functions

Wj`(t, τ) ≡ 1

P tot,eq
Bj

∫∫∫
k′j(ξ)k′`

[
(t)F(τ) · ξ

]
P eq

A

[
(t)F(τ) · ξ

]
Ξ(ξ; t, τ) d3ξ, (C.132)

allows us to retrieve M equations for the unknowns ρj(t),

∂ρj(t)

∂t
=

∫ t

0

[
M∑
`=1

Wj`(t, τ)ρ`(τ)

]
dτ − K̂jρj(t) + hj(t). (C.133)
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Eq. (C.133) gives a coupled system of linear integro-differential equations, which upon solving for
each ρj(t) and subsequently utilizing Eq. (C.127) provides the solution for PA(ξ; t). For verification,
when all reaction pathways are considered equivalent, Eq. (C.133) can be integrated in order to
obtain Eq. (C.76). While we do not present an exact solution to the system given by Eq. (C.133),
we note that it is easier to solve numerically than the original system, Eqs. (C.126) and (C.129).

C.5.2 Chemical reactions leaving chains intact

Here we consider the reactions A � Bj to leave the chains intact, i.e. in the Bj states there
is a nontrivial single-chain mechanical response and equilibrium distribution via a non-constant
ψ∗Bj(ξ). This case is applicable to many mechanochemically-active polymer networks, such as those
containing force-triggered mechanophores that lengthen chains upon activation [16]. We track the
distribution of chains in these states PBj(ξ; t) using the evolution law analogous to Eq. (5.29), which
would be

∂PBj(ξ; t)

∂t
=

M∑
j=1

k′j(ξ)

[
PA(ξ; t)− PBj(ξ; t)

P eq
Bj

(ξ)
P eq

A (ξ)

]
− ∂

∂ξ
·
[
ξ̇Bj(ξ; t)PBj(ξ; t)

]
. (C.134)

With the affine assumption we have ξ̇Bj(ξ; t) = L(t) · ξ. The stress in Eq. (5.59) is now

σ(t) = n

∫∫∫
PA(ξ; t)

∂ψ∗A(ξ)

∂ξ
ξ d3ξ + n

∫∫∫ [ M∑
j=1

PBj(ξ; t)
∂ψ∗Bj(ξ)

∂ξ

]
ξ d3ξ − p(t)1. (C.135)

Rate-independent irreversible reaction

We now consider the special case of rate-independent irreversible (see Sec. C.4.4) reactions that
leave chains intact. For simplicity (and in certain cases, without loss of generality), we will only
consider a single reaction pathway (M = 1). In this case the evolution of PA(ξ; t) is decoupled
from that of PB(ξ; t), and we retrieve the solution or PA(ξ; t) given by Eq. (C.119). The solution
for PB(ξ; t) can be found after integrating Eq. (C.134) under this special case using the solution for
PA(ξ; t), and we assume PB(ξ; 0) = 0. More intuitively, PB(ξ; t) can be calculated by including the
end-to-end vectors that have crossed the yield surface, which would be

PB(ξ; t) = P eq
A

[
F−1(t) · ξ

] [
1−Θ(ξ; t, 0)

]
. (C.136)

After defining the time-dependent effective end-to-end force vector

fAB(ξ; t) ≡ ∂ψ∗A(ξ)

∂ξ
Θ(ξ; t, 0) +

∂ψ∗B(ξ)

∂ξ

[
1−Θ(ξ; t, 0)

]
, (C.137)

the stress in this special case can then be written as

σ(t) = n

∫∫∫
P eq

A

[
F−1(t) · ξ

]
fAB(ξ; t) ξ d3ξ − p(t)1. (C.138)
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Neglecting the change in single-chain mechanical response

Next, we consider the additional specialty where the single-chain mechanical response changes
negligibly after the rate-independent irreversible reaction takes place which leaves the chain intact.
This effectively amounts to neglecting the change in length and stiffness of the active bond/monomer
during the reaction. In this case we can write the stress in the same form as [125], which is that of
a permanent network,

σ(t) = n

∫∫∫
P eq

A

[
F−1(t) · ξ

] ∂ψ∗(ξ)

∂ξ
ξ d3ξ − p(t)1, (C.139)

where ψ∗(ξ) is valid for all ξ. The distribution of unreacted and reacted chains are still given by
Eqs. (C.119) and (C.136), respectively, and we track the totals in each through integration, i.e.

P tot
A (t) =

∫∫∫
P eq

A

[
F−1(t) · ξ

]
Θ(ξ; t, 0) d3ξ. (C.140)

Application: force-mediated small molecule release in a double network hydrogel

We apply our extended-then-simplified theory to model the mechanical response and release per-
centage when deforming a double network hydrogel containing mechanophores for small molecule
release [199]. We model the release reaction as a rate-independent irreversible reaction occurring
at an extension (nondimensional end-to-end length) of γr, neglecting changes in single-chain me-
chanics. We also include irreversible chain breaking at the larger extension γc > γr. The release
percentage P tot

R (t) is given by Eq. (C.140) when using γr within the reaction propagator, i.e.

P tot
R (t) =

∫∫∫
P eq

A

[
F−1(t) · ξ

]
ΘR(ξ; t, 0) d3ξ. (C.141)

The distribution of intact chains is still given by Eq. (C.119), which is then used for stress in
Eq. (5.59). Three model parameters were directly determined by the polymer chemistry: the
number of links N#

b = 85 was determined by the average number of monomers between crosslinks;
the volumetric swelling ratio J = 10 was estimated from the water content compared to the dry
polymer content; and the pre-swelling shear modulus n/β = 36.56 kPa was determined such that
the model matched the median modulus from experiment of 56 kPa. The nondimensional link
stiffness κ = 2000 and γc = 1 were calibrated to the mechanical response of the material, while
γr = 0.575 was then calibrated to the corresponding release percentage. We utilized the EFJC
model for simplicity: since κ is large and γc is unity, the links of the intact chains are always in the
harmonic regime, and therefore the uFJC model would obtain the same results as the EFJC model.

Uniaxial compression experiments were performed on material samples at room temperature
to different maximum stresses, holding for 5 min and afterward measuring the release percentage
throughout the entire specimen. The resulting mechanical responses and release percentages are
shown in Fig. C.2, along with that predicted by the theory. We find reasonable overall agreement
between experiment and theory for the mechanical response, where the theoretical response mostly
lies within specimen variability. For the release percentage as a function of the applied stress, the
theory does not predict the high amount of release at the smaller stress of 0.1 MPa, but predicts the
overall sub-linear behavior and is accurate at the higher stresses of 0.5 MPa and 1 MPa. Another set
of uniaxial compression experiments were performed: after the samples were compressed to 0.1 MPa
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(a) (b)

Figure C.2: (a) Engineering stress-strain results from the experiments and the theory. (b) Molecular release
percentage as a function of the maximum compressive stress from the experiments and the theory. Plots from [199].

and the release percentage was measured, they were rotated by 90◦ and reloaded to 0.1 MPa, after
which the additional amount release was measured. These results are shown in Fig. C.3 along with
the theoretical results, which predict a similar trend in release reduction of the rotated samples.
Our theory provides the following insight: for uniaxial compression, release primarily occurs in
chains with end-to-end vectors transverse to the loading direction. Since a sizable portion of these
end-to-end vectors is shared between the unrotated and rotated sample, less release will be observed
when reloading the rotated sample to the same stress.

C.6 Python package

This section details the source code (a Python package constituted by four distinct modules) and
several self-contained examples pertaining to the Python implementation [149] of the model [148]
developed in Chapter 5 and Appendix C. The Python package is available on GitHub and PyPI (pip
install chain breaking polymer networks). It was written for Python 3, and uses some typi-
cal packages: numpy, scipy, and matplotlib. After installation, the package is best imported using:

from chain_breaking_polymer_networks import *

C.6.1 Python Modules

single chain

The package contains a single_chain module of classes corresponding to different single-chain
models. For example,

single_chain_model = ideal(N_b = 88)

https://github.com/mbuche/chain_breaking_polymer_networks/
https://pypi.org/project/chain-breaking-polymer-networks/
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(a) (b)

Figure C.3: (a) Molecular release percentage on a sample after first compression to 0.1 MPa, 90◦ rotation, and
second compression to 0.1 MPa. (b) Theoretical molecular release percentage after first compression, 90◦ rotation,
and second compression, for three different stress values. Plots from [199].

creates an ideal chain model with 88 links. The single-chain models are nearly fully nondimensional
(model parameters, inputs and outputs for functions) and they use keyword arguments for the
model parameters, though not all parameters are optional (see source code, or examples). The
single-chain models contain four main functions:

• the nondimensional single-chain mechanical response, eta(gamma), which is η(γ);

• the nondimensional equilibrium probability density distribution of intact chain extensions,
P_A_eq(gamma), which is P eq

A (γ);

• the nondimensional equilibrium radial distribution function, g_A_eq(gamma), which is geq
A (γ);

• the net forward reaction rate coefficient function, k(gamma) (is the only function with units,
1/seconds), which is k(γ).

Example: for the ideal chain model above,

single_chain_model.P_A_eq(0.88)

returns the probability density that a chain is both intact and at a nondimensional end-to-end
length of 0.88, which is P eq

A (0.8).

The Python module file single_chain.py is printed below:

# ###############################################################################################################################

# General setup

# ###############################################################################################################################

# Import libraries

import sys

import numpy as np

from scipy.integrate import quad

from scipy.interpolate import interp1d
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from scipy.optimize import minimize_scalar

# Interpolation parameters

num_interp = int(3e3)

interp_kind_1D = ’cubic’

# Numerical tolerance parameters

cutoff_for_log_over_sinh = 3e1

cutoff_stretch_for_harmonic_eta_EFJC = 3

minimum_exponent = np.log(sys.float_info.min)/np.log(10)

maximum_exponent = np.log(sys.float_info.max)/np.log(10)

eta_small = 10 ** minimum_exponent

# Function to invert a function

def inv_fun_1D(x_query , fun , bounds = None):

# Change method depending on whether bounds are involved

if bounds is None:

return minimize_scalar(lambda x: np.abs(fun(x) - x_query)).x

else:

return minimize_scalar(lambda x: np.abs(fun(x) - x_query), bounds = bounds , method = ’bounded ’).x

# Function to create interpolation function from stored function

def interp_fun_1D(x_store , y_store):

return interp1d(x_store , y_store , kind = interp_kind_1D , bounds_error = False , fill_value = np.nan)

# Function to avoid overflow when computing ln(x/sinh(x))

def log_over_sinh(x):

# Determine when argument is sufficiently large

where_x_large = np.nan_to_num(x, nan = -1) > cutoff_for_log_over_sinh

log_of_x_over_sinh_x = np.zeros(x.size)

# Use asymptotic relation valid for sufficiently large arguments

if where_x_large.any():

log_of_x_over_sinh_x[where_x_large] = np.log(2*x[where_x_large]) - x[where_x_large]

# Compute analytically otherwise , and zero where argument is zero

where_x_zero = x == 0

where_compute = ~( where_x_large + where_x_zero)

if where_compute.any():

log_of_x_over_sinh_x[where_compute] = np.log(x[where_compute]/np.sinh(x[where_compute]))

return log_of_x_over_sinh_x

# Hyperbolic cotangent function

def coth_safe(eta):

eta = np.where(eta == 0, eta_small , eta)

return 1/np.tanh(eta)

# Langevin function

def Langevin(eta):

eta = np.where(eta == 0, eta_small , eta)

return 1/np.tanh(eta) - 1/eta

# ###############################################################################################################################

# Ideal chain model

# ###############################################################################################################################

class ideal:

# For more information , see:

# Statistical mechanical constitutive theory of polymer networks:

# The inextricable links between distribution , behavior , and ensemble

# Michael R. Buche and Meredith N. Silberstein

# Physical Review E, 2021 , 102 , 012501

# doi.org/10.1103/PhysRevE.102.012501

# Class initialization

def __init__(self , ** kwargs):

# Default parameter values

N_b = 88

k_0 = np.exp(minimum_exponent)

gamma_c = np.inf

# Retrieve specified parameters

for key , value in kwargs.items ():

if key == ’N_b’:

N_b = value

elif key == ’k_0’:

if value > 0:

k_0 = value

elif key == ’gamma_c ’:

gamma_c = value

# Retain for certain purposes

self.N_b = N_b

self.k_0 = k_0

self.gamma_c = gamma_c

# Model -specific modifications

self.P_A_tot_eq = 1
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self.gamma_TS = np.inf

self.k = lambda gamma_in: k_0 + 0*gamma_in

self.K_hat = k_0

self.max_k_rev = k_0

self.N_b_H = 0

self.varsigma = 1

# Nondimensional mechamical response of the chain

def eta(self , gamma_in):

return 3*gamma_in

# Nondimensional equilibrium distribution function

def P_A_eq(self , gamma_in , normalization = 1):

return (gamma_in <= self.gamma_c)*(3*self.N_b/2/np.pi) **(3/2)*np.exp(-3/2*self.N_b*gamma_in ** 2)/normalization

# Nondimensional equilibrium radial distribution function

def g_A_eq(self , gamma_in , normalization = 1):

return 4*np.pi*gamma_in ** 2*self.P_A_eq(gamma_in , normalization)

# ###############################################################################################################################

# Extensible freely -joined chain model

# ###############################################################################################################################

class EFJC:

# For more information , see:

# Analytical results of the extensible freely jointed chain model

# Alessandro Fiasconaro and Fernando Falo

# Physica A 2019 , 532 , 121929

# doi.org/10.1016/j.physa.2019.121929

# See also:

# Statistical mechanical constitutive theory of polymer networks:

# The inextricable links between distribution , behavior , and ensemble

# Michael R. Buche and Meredith N. Silberstein

# Physical Review E, 2021 , 102 , 012501

# doi.org/10.1103/PhysRevE.102.012501

# Class initialization

def __init__(self , ** kwargs):

# Default parameter values

N_b = None

kappa = None

k_0 = np.exp(minimum_exponent)

gamma_c = np.inf

# Retrieve specified parameters

for key , value in kwargs.items ():

if key == ’N_b’:

N_b = value

elif key == ’k_0’:

if value > 0:

k_0 = value

elif key == ’kappa ’:

kappa = value

elif key == ’gamma_c ’:

gamma_c = value

# Check parameter specifications

if N_b is None:

sys.exit(’Error: Need to specify N_b.’)

elif kappa is None:

sys.exit(’Error: Need to specify kappa.’)

# Retain for certain purposes

self.N_b = N_b

self.k_0 = k_0

self.kappa = kappa

self.gamma_c = gamma_c

# Model -specific modifications

self.P_A_tot_eq = 1

self.gamma_TS = np.inf

self.k = lambda gamma_in: k_0 + 0*gamma_in

self.K_hat = k_0

self.max_k_rev = k_0

self.N_b_H = 0

self.varsigma = 1

# Nondimensional mechanical response of the chain

def gamma_fun(eta):

coth = coth_safe(eta)

L = Langevin(eta)

return L + eta/kappa*(1 + (1 - L*coth)/(1 + eta/kappa*coth))

# Compute and store the inverted nondimensional mechanical response to interpolate from

self.gamma_store = np.linspace(0, cutoff_stretch_for_harmonic_eta_EFJC , num_interp)

self.eta_store = np.zeros(self.gamma_store.size)

for i in range(1, len(self.gamma_store)):

self.eta_store[i] = inv_fun_1D(self.gamma_store[i], gamma_fun)

# Function to interpolate from the inverted nondimensional mechamical response of the chain
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self.eta_interp_fun = interp_fun_1D(self.gamma_store , self.eta_store)

def eta_fun(gamma_in):

if isinstance(gamma_in , np.ndarray):

eta_out = np.zeros(gamma_in.shape)

harmonic_region = gamma_in > cutoff_stretch_for_harmonic_eta_EFJC

eta_out[harmonic_region] = kappa*(gamma_in[harmonic_region] - 1)

eta_out[~harmonic_region] = self.eta_interp_fun(gamma_in[~harmonic_region])

else:

if gamma_in > cutoff_stretch_for_harmonic_eta_EFJC:

eta_out = kappa*(gamma_in - 1)

else:

eta_out = self.eta_interp_fun(gamma_in)

return eta_out

# Nondimensional equilibrium distribution function

def P_A_eq_fun(gamma_in , normalization = 1):

# Compute mechanical response

eta = np.array(eta_fun(gamma_in))

eta[eta == 0] = eta_small

# Compute nondimensional Helmholtz free energy per link

coth = coth_safe(eta)

L = Langevin(eta)

vartheta = eta*L + log_over_sinh(eta) - np.log(1 + eta/kappa*coth) \

+ eta ** 2/kappa/2*(1/2 + (1 - L*coth)/(1 + eta/kappa*coth))

# Compute P_A_eq below the yield surface

return (gamma_in <= self.gamma_c)*np.exp(-N_b*vartheta)/normalization

# Nondimensional equilibrium radial distribution function

def g_A_eq_fun(gamma_in , normalization = 1):

return 4*np.pi*gamma_in ** 2*P_A_eq_fun(gamma_in , normalization)

# Normalize the equilibrium distribution

P_A_eq_normalization = quad(g_A_eq_fun , 0, np.inf , full_output = 1)[0]/self.P_A_tot_eq

# Compute and store the function to interpolate from

self.P_A_eq_store = P_A_eq_fun(self.gamma_store , normalization = P_A_eq_normalization)

self.P_A_eq_interp_fun = interp_fun_1D(self.gamma_store , self.P_A_eq_store)

# Function to interpolate from the inverted nondimensional mechamical response of the chain

def eta(self , gamma_in):

if isinstance(gamma_in , np.ndarray):

eta_out = np.zeros(gamma_in.shape)

harmonic_region = gamma_in > cutoff_stretch_for_harmonic_eta_EFJC

eta_out[harmonic_region] = self.kappa*(gamma_in[harmonic_region] - 1)

eta_out[~harmonic_region] = self.eta_interp_fun(gamma_in[~harmonic_region])

else:

if gamma_in > cutoff_stretch_for_harmonic_eta_EFJC:

eta_out = self.kappa*(gamma_in - 1)

else:

eta_out = self.eta_interp_fun(gamma_in)

return eta_out

# Function to interpolate from the stored nondimensional equilibrium distribution function

def P_A_eq(self , gamma_in , normalization = 1):

return (gamma_in <= self.gamma_c)*self.P_A_eq_interp_fun(gamma_in)/normalization

# Function for the nondimensional equilibrium radial distribution function

def g_A_eq(self , gamma_in , normalization = 1):

return 4*np.pi*gamma_in ** 2*self.P_A_eq(gamma_in , normalization)

# ###############################################################################################################################

# Morse potential - supplemented freely -joined chain model

# ###############################################################################################################################

class Morse_FJC:

# For more information , see:

# Chain breaking in the statistical mechanical constitutive theory of polymer networks

# Michael R. Buche and Meredith N. Silberstein

# Preprint submitted to Journal of the Mechanics and Physics of Solids

# arxiv.org/abs/2104.08866

# Class initialization

def __init__(self , ** kwargs):

# Default parameter values

N_b = None

N_b_H = 0

k_0 = np.exp(minimum_exponent)

omega = None

grumbo = None

beta_u_b = None

kappa = None

kappa_H = None

varsigma = 1

beta_Delta_Psi_0 = 0

gamma_c = None

# Retrieve specified parameters
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for key , value in kwargs.items ():

if key == ’N_b’:

N_b = value

elif key == ’N_b_H ’:

N_b_H = value

elif key == ’k_0’:

if value > 0:

k_0 = value

elif key == ’omega ’:

omega = value

elif key == ’kappa ’:

kappa = value

elif key == ’grumbo ’:

grumbo = value

elif key == ’beta_u_b ’:

beta_u_b = value

elif key == ’kappa_H ’:

kappa_H = value

elif key == ’varsigma ’:

varsigma = value

elif key == ’beta_Delta_Psi_0 ’:

beta_Delta_Psi_0 = value

elif key == ’gamma_c ’:

gamma_c = value

# Check parameter specifications

if N_b is None:

sys.exit(’Error: Need to specify N_b in Morse_FJC ().’)

elif kappa is None:

sys.exit(’Error: Need to specify kappa in Morse_FJC ().’)

elif N_b_H == 0:

kappa_H = 1 # kappa_H just has to be nonzero if N_b_H = 0

elif kappa_H is None:

sys.exit(’Error: Specify nonzero kappa_H when specifying nonzero N_b_H in Morse_FJC ().’)

elif N_b == 0:

sys.exit(’Error: For N_b = 0, use the class EFJC() instead of Morse_FJC ().’)

if beta_u_b is not None:

if grumbo is not None:

sys.exit(’Error: Either gamma or beta_u_b need to be specified in Morse_FJC (), but not both.’)

else:

grumbo = np.sqrt(kappa/2/beta_u_b)

elif beta_u_b is None:

if grumbo is None:

sys.exit(’Error: Need to specify beta_u_b in Morse_FJC ().’)

# Retain for certain purposes

self.N_b = N_b

self.N_b_H = N_b_H

self.varsigma = varsigma

self.k_0 = k_0

self.gamma_c = gamma_c

# Automatic physical parameters

eta_max = kappa/4/grumbo

self.P_A_tot_eq = 1/(1 + N_b*np.exp(-beta_Delta_Psi_0))

self.P_B_tot_eq = 1 - self.P_A_tot_eq

# Check if Python thinks P_A_tot_eq or P_B_tot_eq = 0

if self.P_B_tot_eq ** 2 == 0:

sys.exit(’Error: P_B_tot_eq is smaller than precision allows; need to decrease beta_Delta_Psi_0 in Morse_FJC ().’)

elif self.P_A_tot_eq **2 == 0:

sys.exit(’Error: P_A_tot_eq is smaller than precision allows; need to increase beta_Delta_Psi_0 in Morse_FJC ().’)

# Nondimensional incremental mechanical response of the Morse potential

def Delta_lambda(eta):

return np.log(2/(1 + np.sqrt(1 - eta/eta_max)))/grumbo

# Nondimensional Morse potential

def beta_u(eta):

return kappa/2/grumbo **2*(1 - np.exp(-grumbo*Delta_lambda(eta) ))** 2

# Nondimensional mechanical response of the chain

def gamma_fun(eta):

r = varsigma*N_b_H/N_b

eta_c = varsigma*eta

return 1/(1 + r)*(Langevin(eta) + Delta_lambda(eta) + r*(Langevin(eta_c) + eta_c/kappa_H))

# Limiting stretch for an intact chain

self.gamma_TS = gamma_fun(eta_max)

# Ensure that gamma_c is below the limiting stretch for an intact chain

if gamma_c is not None:

if gamma_c > self.gamma_TS:

sys.exit(’Error: Cannot have gamma_c > gamma_TS = ’ + str(self.gamma_TS))

# Initial nondimensional free energy barrier to transition state

beta_Delta_Psi_TS_0 = kappa/8/grumbo **2 - 2*np.log(self.gamma_TS)

# Ensure either attempt frequency or k(0) have been specified

if omega is None:

if k_0 is None:

sys.exit(’Error: Either omega or k_0 need to be specified in Morse_FJC ().’)
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else:

omega = 2*np.pi/N_b*np.exp(beta_Delta_Psi_TS_0 + np.log(k_0))

elif k_0 is None:

k_0 = N_b/2/np.pi*np.exp(-beta_Delta_Psi_TS_0 + np.log(omega))

else:

sys.exit(’Error: Either omega or k_0 need to be specified in Morse_FJC (), but not both.’)

# Compute and store the inverted nondimensional mechanical response to interpolate from

self.gamma_store = np.linspace(0, self.gamma_TS , num_interp)

self.eta_store = np.zeros(self.gamma_store.size)

for i in range(len(self.gamma_store)):

self.eta_store[i] = inv_fun_1D(self.gamma_store[i], gamma_fun , bounds = (0, eta_max))

# Function to interpolate from the inverted nondimensional mechamical response of the chain

self.eta = interp_fun_1D(self.gamma_store , self.eta_store)

# Nondimensional equilibrium distribution function

def P_A_eq_fun(gamma_in , normalization = 1):

# Compute nondimensional Helmholtz free energy per link

eta = self.eta(gamma_in)

r_N = N_b_H/N_b

eta_c = varsigma*eta

vartheta = 1/(1 + r_N)*(eta/np.tanh(eta) - 1 + log_over_sinh(eta) + beta_u(eta) \

+ r_N*(eta_c/np.tanh(eta_c) - 1 + log_over_sinh(eta_c) + eta_c ** 2/2/kappa_H))

# Avoid overflow before computing and returning P_A_eq

exponent = -np.log(normalization) - (N_b + N_b_H)*vartheta

exponent[exponent > maximum_exponent] = maximum_exponent

exponent[exponent < minimum_exponent] = minimum_exponent

return np.exp(exponent)

# Nondimensional equilibrium radial distribution function

def g_A_eq_fun(gamma_in , normalization = 1):

return 4*np.pi*gamma_in ** 2*P_A_eq_fun(gamma_in , normalization)

# Normalize the equilibrium distribution

P_A_eq_normalization = quad(g_A_eq_fun , 0, self.gamma_TS , full_output = 1)[0]/self.P_A_tot_eq

# Compute and store the function to interpolate from

self.P_A_eq_store = P_A_eq_fun(self.gamma_store , normalization = P_A_eq_normalization)

self.P_A_eq_interp_fun = interp_fun_1D(self.gamma_store , self.P_A_eq_store)

# Reaction rate coefficient function

if self.gamma_c is None:

def k_fun(gamma_in):

# Compute nondimensional Helmholtz free energy barrier

eta = self.eta(gamma_in)

adj_beta_Delta_Psi_TS = log_over_sinh(self.gamma_TS*eta) - log_over_sinh(eta) - beta_u(eta) \

+ self.gamma_TS*eta/np.tanh(self.gamma_TS*eta) - eta/np.tanh(eta)

# Avoid overflow before computing and returning k

exponent = np.log(k_0) - N_b*adj_beta_Delta_Psi_TS

exponent[exponent > maximum_exponent] = maximum_exponent

exponent[exponent < minimum_exponent] = minimum_exponent

return np.exp(exponent)

# Compute and store the function to interpolate from

self.log_k_store = np.log(k_fun(self.gamma_store))

self.log_k_interp_fun = interp_fun_1D(self.gamma_store , self.log_k_store)

# Total reverse reaction rate coefficient

if self.gamma_c is None:

integrand_K_hat = lambda xi: k_fun(xi)*g_A_eq_fun(xi, normalization = P_A_eq_normalization)

self.K_hat = quad(integrand_K_hat , 0, self.gamma_TS , full_output = 1)[0]/self.P_B_tot_eq

else:

self.K_hat = k_0*self.P_A_tot_eq/self.P_B_tot_eq

# Maximum reverse reaction rate coefficient

if self.gamma_c is None:

fun = lambda xi: -k_fun(xi)*P_A_eq_fun(xi, normalization = P_A_eq_normalization)/self.P_B_tot_eq

self.max_k_rev = -fun(minimize_scalar(fun , bounds = (0, self.gamma_TS), method = ’bounded ’).x)[0]

else:

self.max_k_rev = k_0*P_A_eq_fun(0)[0]/self.P_B_tot_eq

# Function to interpolate from the stored nondimensional equilibrium distribution function

def P_A_eq(self , gamma_in , normalization = 1):

return self.P_A_eq_interp_fun(gamma_in)/normalization

# Function for the nondimensional equilibrium radial distribution function

def g_A_eq(self , gamma_in , normalization = 1):

return 4*np.pi*gamma_in ** 2*self.P_A_eq(gamma_in , normalization)

# Function to interpolate from the stored reaction rate coefficient function

def k(self , gamma_in):

if self.gamma_c is None:

return np.exp(self.log_k_interp_fun(gamma_in))

else:

if isinstance(gamma_in , np.ndarray):

k_out = self.k_0*np.ones(gamma_in.shape)

k_out[gamma_in > self.gamma_c] = np.inf
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else:

if gamma_in > self.gamma_c:

k_out = np.inf

else:

k_out = self.k_0

return k_out

network

The network module contains a few classes, most notably the deform_network class. Given an
applied deformation, such as

def F(t): return 1 + t

the total testing time in seconds, the deformation mode (currently supports ’uniaxial’ and ’

equibiaxial’ stress; the deformation is of course incompressible), and a single-chain model, the
deform_network class is used to create a network model from the single-chain model. Here we
apply uniaxial stress for 3 seconds:

network_model = deform_network(F, ’uniaxial’, 3, single_chain_model, \

ignore_yield = True, use_spatial_grid = False)

Since this initialization also prepares the solution method, many optional keyword arguments are
available. In this example we ignore the breaking of chains via meeting a yield surface at some
critical extension (the ideal chain model is infinitely extensible) using ignore_yield = True, and
we choose to utilize quadrature for spatial integrations rather than a pre-specified spatial grid using
use_spatial_grid = False; the converse in either case is the default. The examples that follow
illustrate the critical aspects of creating the network model, and more information can be found in
the helpful comments in the network.py file. The results (stress, total probability that a chain is
intact, etc.) are solved for over the specified testing time using

results = network_model.solve(csv_directory =’./’)

where the optional keyword argument here is used to write the results to a .csv file. The default is
None (no .csv file is written).

The Python module file network.py is printed below:

# ###############################################################################################################################

# General setup

# ###############################################################################################################################

# Import libraries

import sys

import numpy as np

from scipy.interpolate import interp1d , interp2d

from scipy.integrate import romb , simpson , dblquad

# Numerical parameters

array_factor_est = 8

tol_residual_rho = 1e-88

dblquad_epsabs = 1e-3

dblquad_epsrel = 1e-3

num_interp_quad_specialized_ignore_yield = int(1e2)

minimum_exponent = np.log(sys.float_info.min)/np.log(10)

# ###############################################################################################################################

# Deformation application class
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# ###############################################################################################################################

class deform_network:

# ###########################################################################################################################

# Initialization

# ###########################################################################################################################

def __init__(self , F, deformation_type , total_time_in_seconds , single_chain_model , relaxation_function = None , J_sw = 1, \

max_F_dot = None , max_RAM_usage_in_bytes = None , nondimensional_timestep_suggestion = 1e-2, num_grid_suggestion = 129 , \

interp_kind_2D = ’quintic ’, use_spatial_grid = True , enumerate_full_arrays = True , \

ignore_yield = False , ignore_reforming = False):

# Initialize and retain certain variables

self.csv_initialized = False

self.ignore_yield = ignore_yield

self.ignore_reforming = ignore_reforming

self.use_spatial_grid = use_spatial_grid

self.enumerate_full_arrays = enumerate_full_arrays

self.initialized_single_chain_model = single_chain_model

# #######################################################################################################################

# Deformation

# #######################################################################################################################

# Retain certain variables

self.F = F

self.J_sw = J_sw

self.deformation_type = deformation_type

self.total_time_in_seconds = total_time_in_seconds

# Estimate the maximum rate of deformation if not given

if max_F_dot is None:

t_temp = np.linspace(0, total_time_in_seconds , int(1e5))

self.max_F_dot = np.max(np.abs(np.diff(F(t_temp))/np.diff(t_temp)))

else:

self.max_F_dot = max_F_dot

# If gamma_c specified , best method to use may change

if single_chain_model.gamma_c is None:

self.use_specialized = False

else:

self.use_specialized = True

# #######################################################################################################################

# Spatial discretization or quadrature

# #######################################################################################################################

# Spatial integration using a grid

if use_spatial_grid is True:

# Retain the 2D interpolation kind

self.interp_kind_2D = interp_kind_2D

# Create the symmetry -conscious spatial grid

self.num_grid = self.adjust_for_romb(num_grid_suggestion)

self.z = np.linspace(0, single_chain_model.gamma_TS , self.num_grid)

self.r = self.z

self.dz = self.z[1] - self.z[0]

self.dr = self.dz

self.Z, self.R = np.meshgrid(self.z, self.r)

ELL = np.sqrt(self.Z*self.Z + self.R*self.R)

# Integration element specialized for stress calculation

self.ELEMENT_stress = self.element_stress(self.Z, self.R, single_chain_model)

# Adjust normalization of P_A_eq on the grid

P_A_eq_ELL_non_normalized = np.nan_to_num(single_chain_model.P_A_eq(ELL), nan = 0)

self.P_A_eq_normalization = self.integral_grid_d_3_xi(P_A_eq_ELL_non_normalized)/single_chain_model.P_A_tot_eq

# Total reverse reaction rate coefficient on the grid

P_A_eq_ELL = np.nan_to_num(single_chain_model.P_A_eq(ELL , normalization = self.P_A_eq_normalization), nan = 0)

self.k_ELL = np.nan_to_num(single_chain_model.k(ELL), nan = 0)

if single_chain_model.gamma_c is None:

self.K_hat = self.integral_grid_d_3_xi(self.k_ELL*P_A_eq_ELL)/single_chain_model.P_B_tot_eq

else:

self.K_hat = single_chain_model.K_hat

# Maximum reverse reaction rate coefficient on the grid

if single_chain_model.gamma_c is None:

self.max_k_rev = np.max(self.k_ELL*P_A_eq_ELL/single_chain_model.P_B_tot_eq)

else:

self.max_k_rev = single_chain_model.max_k_rev

# Spatial integration using quadrature

else:

# Inherit from single_chain_model since will use the same integration scheme

self.P_A_eq_normalization = 1

self.k_0 = single_chain_model.k_0

self.K_hat = single_chain_model.K_hat

self.max_k_rev = single_chain_model.max_k_rev
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# #######################################################################################################################

# Relaxation function related setup

# #######################################################################################################################

if relaxation_function is None:

self.g_timescale = np.inf

self.g = lambda t, tau: 1 + 0*t + 0*tau

self.d_g_d_tau = lambda t, tau: 0*t + 0*tau

self.g_K_hat = np.exp(minimum_exponent)

else:

self.g_timescale = relaxation_function.timescale

self.g = relaxation_function.g

self.d_g_d_tau = relaxation_function.d_g_d_tau

try:

self.g_K_hat = single_chain_model.P_A_tot_eq/single_chain_model.P_B_tot_eq/self.g_timescale

except AttributeError:

self.g_K_hat = np.exp(minimum_exponent)

# #######################################################################################################################

# Time discretization

# #######################################################################################################################

# Estimate timestep based on the smallest timescales

timescales = np.array([1/self.max_F_dot , 1/self.K_hat , 1/self.max_k_rev , self.g_timescale , 1/self.g_K_hat])

estimated_timestep = float(nondimensional_timestep_suggestion*np.min(timescales))

# Enumerating full arrays requires large memory , so have to do it in chunks rather than over the full history

if use_spatial_grid is True:

# Memory considerations

if max_RAM_usage_in_bytes is None:

import psutil

max_RAM_usage_in_bytes = psutil.virtual_memory ().available

max_array_numel = max_RAM_usage_in_bytes/8/array_factor_est

if enumerate_full_arrays is True:

max_num_time_chunk = np.floor(np.sqrt(max_array_numel/self.num_grid ** 2)).astype(int)

else:

max_num_time_chunk = np.floor(max_array_numel/self.num_grid **2).astype(int)

# Chunk history and decrease timestep in order to satisfy memory requirements and Romberg integration

self.num_chunks = 0

self.num_time = 2*max_num_time_chunk

while self.num_time > max_num_time_chunk:

self.num_chunks += 1

self.num_time = self.adjust_for_romb(total_time_in_seconds/estimated_timestep/self.num_chunks)

self.timestep = total_time_in_seconds/self.num_chunks/(self.num_time - 1)

# Enumerate time limits for each chunk

t_lims_all = total_time_in_seconds/self.num_chunks*np.arange(0, self.num_chunks + 1, 1)

self.t_lims = np.zeros((self.num_chunks , 2))

for index_chunk in range(self.num_chunks):

self.t_lims[index_chunk ,:] = [t_lims_all[index_chunk], t_lims_all[index_chunk + 1]]

# No memory considerations and corresponding history chunking since will not enumerate full arrays

else:

self.num_time = self.adjust_for_romb(total_time_in_seconds/estimated_timestep)

self.timestep = total_time_in_seconds/(self.num_time - 1)

# ###########################################################################################################################

# Function to solve for results over the applied deformation history

# ###########################################################################################################################

def solve(self , display_progress = True , csv_directory = None , checkpoint_directory = None):

# Methods using a grid for spatial integrals

if self.use_spatial_grid is True:

# Enumerate full arrays to mimimize computation time , chunking time history to satisfy memory requirements

if self.enumerate_full_arrays is True:

# Function to remove an initial point from results

def remove_initial_point(results):

results_out = list(results)

for index in range(len(results)):

results_out[index] = results[index][1:]

return tuple(results_out)

# Allocate results

t = []

F = []

P_A_tot = []

total_rate_break = []

total_rate_reform = []

beta_sigma_over_n = []

# Loop over all chunks in the history

for index_chunk in range(self.num_chunks):

# Display progress if opted

if display_progress is True:

print(’ On chunk ’, index_chunk + 1, ’of’, self.num_chunks , end = ’\r’)
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# Equilibrium initial distribution for first chunk , or initial distribution from end of previous chunk

if index_chunk == 0:

results_chunk , P_A_end = self.compute_results_grid_chunky(self.t_lims[index_chunk ,:])

else:

results_chunk , P_A_end = self.compute_results_grid_chunky(self.t_lims[index_chunk ,:], P_A_0 = P_A_end)

# Remove repeated points in time among chunks

if index_chunk > 0 or self.J_sw != 1 or self.initialized_single_chain_model.gamma_c is not None:

results_chunk = remove_initial_point(results_chunk)

# Collect results

t = np.append(t, results_chunk[0])

F = np.append(F, results_chunk[1])

P_A_tot = np.append(P_A_tot , results_chunk[2])

total_rate_break = np.append(total_rate_break , results_chunk[3])

total_rate_reform = np.append(total_rate_reform , results_chunk[4])

beta_sigma_over_n = np.append(beta_sigma_over_n , results_chunk[5])

results = t, F, P_A_tot , total_rate_break , total_rate_reform , beta_sigma_over_n

# Create a checkpoint .csv if opted after each chunk

if checkpoint_directory is not None:

checkpoint(checkpoint_directory).create(t[-1], P_A_end)

# Refrain from enumerating full arrays but requires no history chunking , takes longer

else:

results , P_A_end = self.compute_results_grid([0, self.total_time_in_seconds])

# Methods using quadrature for spatial integrals

else:

# Efficient method in the special case for when k is constant and the single -chain model is infinitely - extensible

if self.use_specialized is True and self.ignore_yield is True:

results , P_A_end = self.compute_results_quad_specialized_ignore_yield([0, self.total_time_in_seconds])

# Method for the general case

else:

results , P_A_end = self.compute_results_quad([0, self.total_time_in_seconds])

# Append results to the .csv if opted

if csv_directory is not None:

if self.csv_initialized is False:

results_csv_initialized = results_csv(csv_directory)

self.csv_initialized = True

results_csv_initialized.append(0, results)

# Create a checkpoint .csv if opted

if checkpoint_directory is not None:

checkpoint(checkpoint_directory).create(t[-1], P_A_end)

# Return the results

return results

# ###########################################################################################################################

# Function for computing results using spatial quadrature

# ###########################################################################################################################

def compute_results_quad(self , t_span , P_A_0 = None):

# Enumerate the time and relative deformation components

t, F_zz_rel , F_rr_rel = self.enumerate_t_and_F_rel(t_span)

total_time = t_span[-1] - t_span[0]

num_time = len(t)

# Function for the relatively -deformed coordinates

def ell_rel(z, r, index_t , index_tau):

return np.sqrt(z*z*F_zz_rel[index_t , index_tau]**2 + r*r*F_rr_rel[index_t , index_tau]**2)

# #######################################################################################################################

# Time - dependent quantities for spatial integrals

# #######################################################################################################################

# Function for the relatively -deformed initial distribution

if P_A_0 is None:

def P_A_0_rel_t(z, r, index_t):

return self.initialized_single_chain_model.P_A_eq(ell_rel(z, r, index_t , 0)/self.J_sw ** (1/3), \

normalization = self.P_A_eq_normalization*self.J_sw)

else:

sys.exit(’Error: Beginning from a nonequilibrium initial distribution not yet implemented.’)

# Function for the relatively -deformed equilibrium distribution

def P_A_eq_rel(z, r, index_t , index_tau):

return self.initialized_single_chain_model.P_A_eq(ell_rel(z, r, index_t , index_tau), \

normalization = self.P_A_eq_normalization)

# Function for the relatively -deformed reaction rate coefficient function

def k_rel(z, r, index_t , index_tau):

return self.initialized_single_chain_model.k(ell_rel(z, r, index_t , index_tau))

# Function for the reaction propagator

def Xi(z, r, index_t , index_tau):

if index_t == index_tau:
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return 1 + 0*(z + r)

else:

integrand = np.zeros(( index_t + 1 - index_tau))*(z + r)

for index_s in range(index_t + 1 - index_tau):

integrand[:,:,index_s] = k_rel(z, r, index_t , index_s)

return np.exp(-self.integral_ds(integrand))

# Function for the homogeneous solution for P_A

def P_A_h(z, r, index_t):

return np.nan_to_num(P_A_0_rel_t(z, r, index_t)*Xi(z, r, index_t , 0)*self.g(t[index_t], 0), nan = 0)

# Function for the integrand of K

def integrand_K(z, r, index_t , index_tau):

return np.nan_to_num(P_A_eq_rel(z, r, index_t , index_tau)*Xi(z, r, index_t , index_tau)*( \

k_rel(z, r, index_t , index_tau)*self.g(t[index_t], t[index_tau]) \

+ self.d_g_d_tau(t[index_t], t[index_tau])), nan = 0)

# #######################################################################################################################

# Solve the integral equation

# #######################################################################################################################

# Amount of initially -intact chains that have been broken

P_B_tot_h = np.zeros(num_time)

for index_t in range(num_time):

P_B_tot_h[index_t] = 1 - self.integral_quad_d_3_xi(lambda z,r: P_A_h(z, r, index_t))

# Integral equation only defined when P_B_tot_eq is nonzero

if self.initialized_single_chain_model.P_B_tot_eq > 0 and self.ignore_reforming is False:

# Kernel K(t,tau) and right -hand side b(t)

b = self.initialized_single_chain_model.P_B_tot_eq*P_B_tot_h

K = np.zeros((num_time , num_time))

for index_t in range(num_time):

for index_tau in range(index_t + 1):

K[index_t , index_tau] = self.integral_quad_d_3_xi( \

lambda z,r: integrand_K(z, r, index_t , index_tau))/self.initialized_single_chain_model.P_B_tot_eq

# Successive approximations to retrieve rho(t)

rho = self.solve_Volterra(K, b, total_time)

# Total probability of broken chains

P_B_tot = self.initialized_single_chain_model.P_B_tot_eq*rho

# Integral equation undefined when P_B_tot_eq = 0; also for rate - independent irreversible breaking

else:

P_B_tot = P_B_tot_h

# #######################################################################################################################

# Compute and return the results

# #######################################################################################################################

# Total probability of intact chains

P_A_tot = 1 - P_B_tot

# Distribution at the end of the partition

P_A_end = np.nan

# Total breaking and reforming rates

total_rate_reform = self.K_hat*(1 - P_A_tot)

total_rate_break = np.gradient(P_A_tot)/np.gradient(t) - total_rate_reform

# Nondimensional stress corresponding to applied the deformation

beta_sigma_h_over_n = np.zeros(num_time)

beta_sigma_p_over_n = np.zeros(num_time)

for index_t in range(num_time):

beta_sigma_h_over_n[index_t] = self.integral_quad_d_3_xi(lambda z,r: P_A_h(z, r, index_t), element = ’stress ’)

if self.initialized_single_chain_model.P_B_tot_eq > 0 and self.ignore_reforming is False:

integrand_beta_sigma_p_over_n = np.zeros(num_time)

for index_tau in range(index_t + 1):

integrand_beta_sigma_p_over_n[index_tau] = rho[index_tau]*self.integral_quad_d_3_xi( \

lambda z,r: integrand_K(z, r, index_t , index_tau), element = ’stress ’)

beta_sigma_p_over_n[index_t] = self.integral_d_tau(integrand_beta_sigma_p_over_n)

beta_sigma_over_n = beta_sigma_h_over_n + beta_sigma_p_over_n

# Return results

results = t, self.F(t), P_A_tot , total_rate_break , total_rate_reform , beta_sigma_over_n

return results , P_A_end

# ###########################################################################################################################

# Function for computing results on a spatial grid

# ###########################################################################################################################

def compute_results_grid(self , t_span , P_A_0 = None):

# Enumerate the time and relative deformation components

t, F_zz_rel , F_rr_rel = self.enumerate_t_and_F_rel(t_span)

total_time = t_span[-1] - t_span[0]

num_time = len(t)

# Function for the relatively -deformed coordinates

def ell_rel(index_t , index_tau):

return np.sqrt(self.Z*self.Z*F_zz_rel[index_t , index_tau]**2 + self.R*self.R*F_rr_rel[index_t , index_tau]**2)
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# #######################################################################################################################

# Time - dependent quantities for spatial integrals

# #######################################################################################################################

# Function for the relatively -deformed initial distribution

if P_A_0 is None:

def P_A_0_rel_t(index_t):

return self.initialized_single_chain_model.P_A_eq(ell_rel(index_t , 0)/self.J_sw **(1/3), \

normalization = self.P_A_eq_normalization*self.J_sw)

else:

sys.exit(’Error: Beginning from a nonequilibrium initial distribution not yet implemented.’)

# Function for the relatively -deformed equilibrium distribution

def P_A_eq_rel(index_t , index_tau):

return self.initialized_single_chain_model.P_A_eq(ell_rel(index_t , index_tau), \

normalization = self.P_A_eq_normalization)

# Function for the relatively -deformed reaction rate coefficient function

def k_rel(index_t , index_tau):

return self.initialized_single_chain_model.k(ell_rel(index_t , index_tau))

# Function for the reaction propagator

def Xi(index_t , index_tau):

if index_t == index_tau:

return np.ones((self.num_grid , self.num_grid))

else:

integrand = np.zeros((self.num_grid , self.num_grid , index_t + 1 - index_tau))

for index_s in range(index_t + 1 - index_tau):

integrand[:,:,index_s] = k_rel(index_t , index_s)

return np.exp(-self.integral_ds(integrand))

# Function for the homogeneous solution for P_A

def P_A_h(index_t):

out = P_A_0_rel_t(index_t)*Xi(index_t , 0)*self.g(t[index_t], 0)

out[np.isnan(out) + np.isinf(out)] = 0

return out

# Function for the integrand of K

def integrand_K(index_t , index_tau):

out = P_A_eq_rel(index_t , index_tau)*Xi(index_t , index_tau)*( \

k_rel(index_t , index_tau)*self.g(t[index_t], t[index_tau]) + self.d_g_d_tau(t[index_t], t[index_tau]))

out[np.isnan(out) + np.isinf(out)] = 0

return out

# #######################################################################################################################

# Solve the integral equation

# #######################################################################################################################

# Amount of initially -intact chains that have been broken

P_B_tot_h = np.zeros(num_time)

for index_t in range(num_time):

P_B_tot_h[index_t] = 1 - self.integral_grid_d_3_xi(P_A_h(index_t))

# Integral equation only defined when P_B_tot_eq is nonzero

if self.initialized_single_chain_model.P_B_tot_eq > 0 and self.ignore_reforming is False:

# Kernel K(t,tau) and right -hand side b(t)

b = self.initialized_single_chain_model.P_B_tot_eq*P_B_tot_h

K = np.zeros((num_time , num_time))

for index_t in range(num_time):

for index_tau in range(index_t + 1):

K[index_t , index_tau] = \

self.integral_grid_d_3_xi(integrand_K(index_t ,index_tau))/self.initialized_single_chain_model.P_B_tot_eq

# Successive approximations to retrieve rho(t)

rho = self.solve_Volterra(K, b, total_time)

# Total probability of broken chains

P_B_tot = self.initialized_single_chain_model.P_B_tot_eq*rho

# Integral equation undefined when P_B_tot_eq = 0; also for rate - independent irreversible breaking

else:

P_B_tot = P_B_tot_h

# #######################################################################################################################

# Compute and return the results

# #######################################################################################################################

# Total probability of intact chains

P_A_tot = 1 - P_B_tot

# Distribution at the end of the partition

P_A_end = np.nan

# Total breaking and reforming rates

total_rate_reform = self.K_hat*(1 - P_A_tot)

total_rate_break = np.gradient(P_A_tot)/np.gradient(t) - total_rate_reform

# Nondimensional stress corresponding to applied the deformation

beta_sigma_h_over_n = np.zeros(num_time)

beta_sigma_p_over_n = np.zeros(num_time)
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for index_t in range(num_time):

beta_sigma_h_over_n[index_t] = self.integral_grid_d_3_xi(P_A_h(index_t), element = ’stress ’)

if self.initialized_single_chain_model.P_B_tot_eq > 0 and self.ignore_reforming is False:

integrand_beta_sigma_p_over_n = np.zeros(num_time)

for index_tau in range(index_t + 1):

integrand_beta_sigma_p_over_n[index_tau] = \

rho[index_tau]*self.integral_grid_d_3_xi(integrand_K(index_t , index_tau), element = ’stress ’)

beta_sigma_p_over_n[index_t] = self.integral_d_tau(integrand_beta_sigma_p_over_n)

beta_sigma_over_n = beta_sigma_h_over_n + beta_sigma_p_over_n

# Return results

results = t, self.F(t), P_A_tot , total_rate_break , total_rate_reform , beta_sigma_over_n

return results , P_A_end

# ###########################################################################################################################

# Function for computing results on a spatial grid; enumerates full arrays and uses vectorized operations

# ###########################################################################################################################

def compute_results_grid_chunky(self , t_span , P_A_0 = None):

# Enumerate the time and relative deformation components

t, F_zz_rel , F_rr_rel = self.enumerate_t_and_F_rel(t_span)

total_time = t_span[-1] - t_span[0]

num_time = len(t)

Delta_t = t - t[0]

# Enumerate the relatively -deformed coordinates

Z_rel = np.tensordot(self.Z, F_zz_rel , axes = 0)

R_rel = np.tensordot(self.R, F_rr_rel , axes = 0)

ELL_rel = np.sqrt(Z_rel*Z_rel + R_rel*R_rel)

z_rel_t = np.tensordot(self.z, F_zz_rel[:,0], axes = 0)

r_rel_t = np.tensordot(self.r, F_rr_rel[:,0], axes = 0)

# Cleanup

del F_zz_rel , F_rr_rel , Z_rel , R_rel

# #######################################################################################################################

# Time - dependent quantities for spatial integrals

# #######################################################################################################################

# Enumerate the relatively -deformed equilibrium distribution

P_A_eq_rel = self.initialized_single_chain_model.P_A_eq(ELL_rel , normalization = self.P_A_eq_normalization)

# Enumerate the relatively -deformed initial distribution

if P_A_0 is None:

P_A_0_rel_t = self.initialized_single_chain_model.P_A_eq(ELL_rel[:,:,:,0]/self.J_sw **(1/3), \

normalization = self.P_A_eq_normalization*self.J_sw)

else:

P_A_0_rel_t = np.zeros ((self.num_grid , self.num_grid , num_time))

for index_t in range(num_time):

P_A_0_rel_t[:,:,index_t] = self.interp_fun_2D(z_rel_t[:,index_t], r_rel_t[:,index_t], P_A_0)

# Cleanup

del z_rel_t , r_rel_t

# Enumerate the relatively -deformed reaction rate coefficient function

k_rel = self.initialized_single_chain_model.k(ELL_rel)

# Cleanup

del ELL_rel

# Enumerate the reaction propagator

Xi = np.zeros((self.num_grid , self.num_grid , num_time , num_time))

for index_t in range(num_time):

for index_tau in range(index_t + 1):

Xi[:,:,index_t ,index_tau] = \

np.exp(-self.integral_ds(k_rel[:,:,index_t ,index_tau:index_t + 1]))

# Enumerate the relaxation function and its derivative

g = np.zeros ((num_time , num_time))

d_g_d_tau = np.zeros((num_time , num_time))

for index_t in range(num_time):

for index_tau in range(index_t + 1):

g[index_t , index_tau] = self.g(Delta_t[index_t], Delta_t[index_tau])

d_g_d_tau[index_t , index_tau] = self.d_g_d_tau(Delta_t[index_t], Delta_t[index_tau])

# Homogeneous solution for P_A

P_A_h = Xi[:,:,:,0]*P_A_0_rel_t

# Cleanup

del P_A_0_rel_t

# Integrand of K

if self.initialized_single_chain_model.gamma_c is not None:

k_rel[np.isinf(k_rel)] = 0

integrand_K = P_A_eq_rel*Xi*(k_rel*g[None ,None ,:,:] + d_g_d_tau[None ,None ,:,:])

# Cleanup

del Xi, k_rel , P_A_eq_rel

#

P_A_h[np.isnan(P_A_h) + np.isinf(P_A_h)] = 0
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integrand_K[np.isnan(integrand_K) + np.isinf(integrand_K)] = 0

# #######################################################################################################################

# Solve the integral equation

# #######################################################################################################################

# Amount of initially -intact chains that have been broken

P_B_tot_h = 1 - self.integral_grid_d_3_xi(P_A_h)

# Integral equation only defined when P_B_tot_eq is nonzero

if self.initialized_single_chain_model.P_B_tot_eq > 0 and self.ignore_reforming is False:

# Kernel K(t,tau) and right -hand side b(t)

K = self.integral_grid_d_3_xi(integrand_K)/self.initialized_single_chain_model.P_B_tot_eq

b = P_B_tot_h/self.initialized_single_chain_model.P_B_tot_eq

# Successive approximations to retrieve rho(t)

rho = self.solve_Volterra(K, b, total_time)

# Total probability of broken chains

P_B_tot = self.initialized_single_chain_model.P_B_tot_eq*rho

# Integral equation undefined when P_B_tot_eq = 0; also for rate - independent irreversible breaking

else:

P_B_tot = P_B_tot_h

rho = np.zeros(num_time)

# Integrand of particular solution for P_A

integrand_P_A_p = rho*integrand_K

# Cleanup

del integrand_K

# #######################################################################################################################

# Compute and return the results

# #######################################################################################################################

# Total probability of intact chains

P_A_tot = 1 - P_B_tot

# Distribution of intact chains

P_A = P_A_h + self.integral_d_tau(integrand_P_A_p)

# Cleanup

del P_A_h , integrand_P_A_p

# Distribution at the end of the partition

P_A_end = P_A[:,:,-1]

# Total breaking and reforming rates

total_rate_break = -self.integral_grid_d_3_xi(P_A*self.k_ELL[:,:,None])

total_rate_reform = self.K_hat*(1 - P_A_tot)

# Nondimensional stress corresponding to the applied deformation

beta_sigma_over_n = self.integral_grid_d_3_xi(P_A , element = ’stress ’)

# Return results

results = t, self.F(t), P_A_tot , total_rate_break , total_rate_reform , beta_sigma_over_n

return results , P_A_end

# ###########################################################################################################################

# Function for (one with k0 AND ignores yield)

# ###########################################################################################################################

def compute_results_quad_specialized_ignore_yield(self , t_span):

# Enumerate the time and relative deformation components

t, F_zz_rel , F_rr_rel = self.enumerate_t_and_F_rel(t_span)

# Function for the relatively -deformed coordinates

def ell_rel(z, r, index_t , index_tau):

return np.sqrt(z*z*F_zz_rel[index_t , index_tau]**2 + r*r*F_rr_rel[index_t , index_tau]**2)

# #######################################################################################################################

# Time - dependent quantities for spatial integrals

# #######################################################################################################################

# Function for the relatively -deformed equilibrium distribution

def P_A_eq_rel(z, r, index_t , index_tau):

return np.nan_to_num(self.initialized_single_chain_model.P_A_eq(ell_rel(z, r, index_t , index_tau)/self.J_sw ** (1/3) ,\

normalization = self.P_A_eq_normalization*self.J_sw), nan = 0)

# Function for the reaction propagator

def Xi(t, tau):

return np.exp(-self.k_0*(t - tau))

# Function for relative time derivative of the reaction propagator

def d_Xi_d_tau(t, tau):

return Xi(t, tau)*self.k_0

# #######################################################################################################################

# Compute stress only at unique deformations to interpolate from
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# #######################################################################################################################

# Choose deformation for stress response based on deformation mode

if self.deformation_type == ’uniaxial ’:

F_use = F_zz_rel

# Store a limited number of unique deformations over the history

F_unique = np.unique(F_use)

indices = np.unique(np.round(np.linspace(0, len(F_unique) - 1, num_interp_quad_specialized_ignore_yield)).astype(int))

F_store = F_unique[indices]

# Compute the stress at these deformations to interpolate from

beta_sigma_h0_over_n = np.zeros(len(F_store))

for index in range(len(F_store)):

index_t , index_tau = np.argwhere(F_store[index] == F_use)[0]

beta_sigma_h0_over_n[index] = \

self.integral_quad_d_3_xi(lambda z,r: P_A_eq_rel(z, r, index_t , index_tau), element = ’stress ’)

# #######################################################################################################################

# Compute and return the results

# #######################################################################################################################

# Function to interpolate from computed stress response

interp_sigma_fun = interp1d(F_store , beta_sigma_h0_over_n , kind = ’cubic’, bounds_error = True)

# Homogeneous solution for the nondimensional stress

beta_sigma_h_over_n = self.g(t, 0)*Xi(t, 0)*interp_sigma_fun(F_zz_rel[:,0])

# Particular solution for the nondimensional stress

beta_sigma_p_over_n = np.zeros(self.num_time)

for index_t in range(self.num_time):

integrand = interp_sigma_fun(F_zz_rel[index_t ,:index_t + 1])*( \

Xi(t[index_t], t[:index_t + 1])*self.d_g_d_tau(t[index_t], t[:index_t + 1]) \

+ d_Xi_d_tau(t[index_t], t[:index_t + 1])*self.g(t[index_t], t[:index_t + 1]))

beta_sigma_p_over_n[index_t] = self.integral_d_tau(np.append(integrand , np.zeros(self.num_time - 1 - index_t)))

# Return results

beta_sigma_over_n = beta_sigma_h_over_n + beta_sigma_p_over_n

P_A_tot = self.initialized_single_chain_model.P_A_tot_eq*np.ones(self.num_time)

total_rate_reform = self.K_hat*(1 - P_A_tot)

total_rate_break = -total_rate_reform

results = t, self.F(t), P_A_tot , beta_sigma_h_over_n , beta_sigma_p_over_n , beta_sigma_over_n

return results , np.nan

# ###########################################################################################################################

# Function to adjust discretization for Romberg integration

# ###########################################################################################################################

def adjust_for_romb(self , num_discretization , decrease = False):

if ((np.log(num_discretization - 1)/np.log(2)).is_integer ()):

return int(round(num_discretization))

else:

n = 0

dos_check = 3

while dos_check >= 2:

n += 1

dos_check = (num_discretization - 1) ** (1/n)

if decrease is True and dos_check < 2:

return int(1 + 2** (n - 1))

else:

return int(1 + 2** n)

# ###########################################################################################################################

# Function for integration over the spatial grid

# ###########################################################################################################################

def integral_grid_d_3_xi(self , FUN , element = None):

if element is None:

element = self.R

elif element == ’stress ’:

element = self.ELEMENT_stress

if FUN.ndim == 2:

return 4*np.pi*romb(romb(FUN*element , dx = self.dr, axis = 0), dx = self.dz, axis = 0)

elif FUN.ndim == 3:

return 4*np.pi*romb(romb(FUN*element[:,:,None], dx = self.dr, axis = 0), dx = self.dz, axis = 0)

elif FUN.ndim == 4:

return 4*np.pi*romb(romb(FUN*element[:,:,None ,None], dx = self.dr, axis = 0), dx = self.dz, axis = 0)

# ###########################################################################################################################

# Function for integration over continuous space

# ###########################################################################################################################

def integral_quad_d_3_xi(self , fun , element = None):

if element is None:

def integrand(z, r):

return fun(z, r)*r

elif element == ’stress ’:

def integrand(z, r):

return fun(z, r)*self.element_stress(z, r, self.initialized_single_chain_model)

if self.initialized_single_chain_model.gamma_c is None:

lim = self.initialized_single_chain_model.gamma_TS

else:
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lim = self.initialized_single_chain_model.gamma_c

return 4*np.pi*dblquad(integrand , 0, lim , lambda r: 0, lambda r: np.sqrt(lim **2 - r**2), \

epsabs = dblquad_epsabs , epsrel = dblquad_epsrel)[0]

# ###########################################################################################################################

# Function for integration element specialized for stress calculation

# ###########################################################################################################################

def element_stress(self , z, r, single_chain_model):

ell = np.sqrt(z*z + r*r)

eta = np.nan_to_num(single_chain_model.eta(ell), nan = 0)

if isinstance(z, np.ndarray):

eta_over_ell = np.zeros(z.shape)

eta_over_ell[ell != 0] = eta[ell != 0]/ell[ell != 0]

else:

if ell == 0:

eta_over_ell = 0

else:

eta_over_ell = eta/ell

C = (single_chain_model.N_b + single_chain_model.varsigma*single_chain_model.N_b_H)/self.J_sw

if self.deformation_type == ’uniaxial ’:

return C*eta_over_ell*r*(z*z - r*r/2)

elif self.deformation_type == ’equibiaxial ’ or deformation_type == ’simple_shear ’:

return C*eta_over_ell*r*(r*r/2 - z*z)

# ###########################################################################################################################

# Function to interpolate from a stored 2D function on the spatial grid

# ###########################################################################################################################

def interp_fun_2D(self , z_query , r_query , FUN):

return interp2d(self.z, self.r, FUN , kind = self.interp_kind_2D)(z_query , r_query)

# ###########################################################################################################################

# Functions for integration in time

# ###########################################################################################################################

def integral_ds(self , FUN):

return simpson(FUN , dx = self.timestep , axis = -1, even = ’last’)

def integral_d_tau(self , FUN):

return romb(FUN , dx = self.timestep , axis = -1)

# ###########################################################################################################################

# Function to enumerate the time and relative deformation

# ###########################################################################################################################

def enumerate_t_and_F_rel(self , t_span):

# Enumerate the time

t = np.linspace(t_span[0], t_span[-1], self.num_time)

# Relative deformation gradient components

if self.deformation_type == ’uniaxial ’:

F_zz_rel = np.tensordot(1/self.F(t), self.F(t), axes = 0)

F_rr_rel = np.tensordot(np.sqrt(self.F(t)), 1/np.sqrt(self.F(t)), axes = 0)

elif self.deformation_type == ’equibiaxial ’:

F_zz_rel = np.tensordot(self.F(t), 1/self.F(t), axes = 0)

F_rr_rel = np.tensordot(1/self.F(t), self.F(t), axes = 0)

elif self.deformation_type == ’simple_shear ’:

pass

return t, F_zz_rel , F_rr_rel

# ###########################################################################################################################

# Function to solve the Volterra integral equation

# ###########################################################################################################################

def solve_Volterra(self , K, b, total_time):

M = 0

rho = b

residual_bound_rho = 1

while residual_bound_rho > tol_residual_rho:

M += 1

rho = b - self.integral_d_tau(K*rho)

residual_bound_rho = \

(self.K_hat*total_time)**(M + 1)/self.initialized_single_chain_model.P_B_tot_eq/np.math.factorial(M + 1)

return rho

# ###############################################################################################################################

# Checkpoint creation class

# ###############################################################################################################################

class checkpoint:

# Initialization also clears any previous checkpoint

def __init__(self , checkpoint_directory):

self.checkpoint_directory_and_file = checkpoint_directory + ’checkpoint.csv’

open(self.checkpoint_directory_and_file , ’w’).close()

# Function to create checkpoints

def create(self , t_end , P_A_end):

f = open(self.checkpoint_directory_and_file , ’a’)
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f.write("%.8e" % t_end)

for i in range(len(P_A_end[:,0])):

f.write("\n")

for j in range(len(P_A_end[0,:])):

f.write("%.8e\t" % P_A_end[i,j])

f.close()

# Function to read checkpoints

def read(self , existing_checkpoint_directory_and_file):

pass

# ###############################################################################################################################

# Results writing class

# ###############################################################################################################################

class results_csv:

# Initialization also clears any previous results

def __init__(self , csv_directory):

self.csv_directory_and_file = csv_directory + ’results.csv’

open(self.csv_directory_and_file , "w").close ()

# Function to append results

def append(self , index_chunk , results):

f = open(self.csv_directory_and_file , "a")

for index_t in range(len(results[0])):

for index_results in range(len(results)):

f.write("%.8e\t" % results[index_results][index_t])

f.write("\n")

f.close()

relaxation function

The relaxation_function module contains several different classes corresponding to different re-
laxation functions, g(t, tau), as attributes, as well as their derivatives, d_g_d_tau(t, tau), and
their corresponding loss and storage functions, g_p(t, tau) and g_pp(t, tau). For information
on currently-implemented relaxation functions, see: the chain relaxation dynamics of the Rouse
model [210, 211], the additional transient bond dynamics of the Sticky Rouse model [212, 213],
recent more complicated Sticky Rouse-based models [214, 215], and other relaxation functions [167,
168]. For example,

sticky_Rouse(N_b = 50, N_x = 5, t_0 = 4e- 4, beta_E_A = 10)

returns an object that is the sticky Rouse model with 50 Kuhn monomers, 5 crosslinks per chain,
a Kuhn monomer relaxation time of 0.0004 seconds, and a nondimensional crosslink dissociation
energy of 10 [212, 214]. The relaxation function is an optional keyword argument when creating
the network model (the default is None).

The Python module file relaxation_function.py is printed below:

# ###############################################################################################################################

# General setup

# ###############################################################################################################################

# Import libraries

import sys

import numpy as np

from scipy.integrate import quad

# ###############################################################################################################################

# Relaxation function from Long et al. 2014

# ###############################################################################################################################

class Long_et_al_2014:

# For more information , see:

# Time Dependent Behavior of a Dual Cross -Link Self -Healing Gel: Theory and Experiments

# Rong Long , Koichi Mayumi , Costantino Creton , Tetsuharu Narita , and Chung -Yuen Hui

# Macromolecules 2014 , 47 , 7243 -7250

# doi.org/10.1021/ma501290h

# See also:
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# Mechanics of a Dual Cross -Link Gel with Dynamic Bonds: Steady State Kinetics and Large Deformation Effects

# Jingyi Guo , Rong Long , Koichi Mayumi , and Chung -Yuen Hui

# Macromolecules 2016 , 49 , 3497 -3507

# doi.org/10.1021/acs.macromol.6b00421

# See also:

# Chain breaking in the statistical mechanical constitutive theory of polymer networks

# Michael R. Buche and Meredith N. Silberstein

# Preprint submitted to Journal of the Mechanics and Physics of Solids

# arxiv.org/abs/2104.08866

def __init__(self , ** kwargs):

# Default parameter values

self.alpha = None

self.t_R = None

self.x_p = 0

# Retrieve specified parameters

for key , value in kwargs.items ():

if key == ’alpha’:

self.alpha = value

elif key == ’t_R’:

self.t_R = value

elif key == ’x_p’:

self.x_p = value

# Check parameter specifications

if self.alpha is None:

sys.exit("Error: Need to specify alpha for Long_et_al_2014 ().")

elif self.alpha < 1:

sys.exit("Error: Need to specify alpha > 1 for Long_et_al_2014 ().")

elif self.t_R is None:

sys.exit("Error: Need to specify t_R for Long_et_al_2014 ().")

# Smallest timescale associated with this relaxation function

self.timescale = self.t_R

# Relaxation function

def g(self , t, tau):

return self.x_p + (1 - self.x_p)*(1 + (self.alpha - 1)*(t - tau)/self.t_R)**(1/(1 - self.alpha))

# Relative time derivative of the relaxation function

def d_g_d_tau(self , t, tau):

return (1 - self.x_p)/self.t_R*(1 + (self.alpha - 1)*(t - tau)/self.t_R)**(self.alpha/(1 - self.alpha))

# Storage function

def g_p(self , omega):

g_p_fun = lambda omega: \

self.x_p + omega*quad(lambda s: (self.g(s, 0) - self.x_p)*np.sin(omega*s), 0, np.inf , full_output = 1)[0]

return np.vectorize(g_p_fun)(omega)

# Loss function

def g_pp(self , omega):

g_pp_fun = lambda omega: \

omega*quad(lambda s: (self.g(s, 0) - self.x_p)*np.cos(omega*s), 0, np.inf , full_output = 1)[0]

return np.vectorize(g_pp_fun)(omega)

# ###############################################################################################################################

# Relaxation function for the Rouse model

# ###############################################################################################################################

class Rouse:

# For more information , see:

# A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers

# Prince E Rouse

# Journal of Chemical Physics , 1953 , 21 , 1272 -1280

# doi.org/10.1063/1.1699180

# See also:

# Extensions of the Rouse Theory of Viscoelastic Properties to Undiluted Linear Polymers

# John D. Ferry , Robert F. Landel , and Malcolm L. Williams

# Journal of Applied Physics , 1955 , 26 , 359

# doi.org/10.1063/1.1721997

# See also:

# Bridging experiments and theory:

# isolating the effects of metal -ligand interactions on viscoelasticity of reversible polymer networks

# Xinyue Zhang , Yuval Vidavsky , Sinai Aharonovich , Steven J. Yang , Michael R. Buche ,

# Charles E. Diesendruck and Meredith N. Silberstein

# Soft Matter , 2020 , 16 , 8591 -8601

# doi.org/10.1039/ D0SM01115K

def __init__(self , ** kwargs):

# Default parameter values

self.N_b = None

self.t_0 = None

# Retrieve specified parameters

for key , value in kwargs.items ():

if key == ’N_b’:

self.N_b = value

elif key == ’t_0’:
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self.t_0 = value

# Check parameter specifications

if self.N_b is None:

sys.exit("Error: Need to specify N_b for Rouse ().")

elif self.t_0 is None:

sys.exit("Error: Need to specify t_0 for Rouse ().")

# Smallest timescale associated with this relaxation function

self.timescale = self.t_0

# Relaxation function

def g(self , t, tau):

g_out = np.zeros(omega.shape)

for p in range(1, int(self.N_b + 1)):

t_p = self.t_0*(self.N_b/p)**2

g_out = g_out + np.exp(-(t - tau)/t_p)/self.N_b

return g_out

# Relative time derivative of the relaxation function

def d_g_d_tau(self , t, tau):

d_g_d_tau_out = np.zeros(omega.shape)

for p in range(1, int(self.N_b + 1)):

t_p = self.t_0*(self.N_b/p)**2

d_g_d_tau_out = d_g_d_tau_out + np.exp(-(t - tau)/t_p)/self.N_b/t_p

return d_g_d_tau_out

# Storage function

def g_p(self , omega):

g_p_out = np.zeros(omega.shape)

for p in range(1, int(self.N_b + 1)):

t_p = self.t_0*(self.N_b/p)**2

g_p_out = g_p_out + ((omega*t_p)** 2/(1 + (omega*t_p)**2))/self.N_b

return g_p_out

# Loss function

def g_pp(self , omega):

g_pp_out = np.zeros(omega.shape)

for p in range(1, int(self.N_b + 1)):

t_p = self.t_0*(self.N_b/p)**2

g_pp_out = g_pp_out + (omega*t_p/(1 + (omega*t_p)**2))/self.N_b

return g_pp_out

# ###############################################################################################################################

# Relaxation function for the sticky Rouse model

# ###############################################################################################################################

class sticky_Rouse:

# For more information , see:

# Ionomer dynamics and the sticky Rouse model

# Quan Chen , Gregory J. Tudryn , and Ralph H. Colby

# Journal of Rheology 2013 , 57 , 1441

# doi.org/10.1122/1.4818868

# See also:

# Bridging experiments and theory:

# isolating the effects of metal -ligand interactions on viscoelasticity of reversible polymer networks

# Xinyue Zhang , Yuval Vidavsky , Sinai Aharonovich , Steven J. Yang , Michael R. Buche ,

# Charles E. Diesendruck and Meredith N. Silberstein

# Soft Matter , 2020 , 16 , 8591 -8601

# doi.org/10.1039/ D0SM01115K

def __init__(self , ** kwargs):

# Default parameter values

self.N_b = None

self.N_x = None

self.t_0 = None

self.t_x = None

self.beta_E_A = None

self.G_x_over_G_0 = 0

# Retrieve specified parameters

for key , value in kwargs.items ():

if key == ’N_b’:

self.N_b = value

elif key == ’N_x’:

self.N_x = value

elif key == ’t_0’:

self.t_0 = value

elif key == ’t_x’:

self.t_x = value

elif key == ’beta_E_a ’:

self.beta_E_a = value

self.t_x = self.t_0*np.exp(self.beta_E_a)

elif key == ’G_x_over_G_0 ’:

self.G_x_over_G_0 = value

# Check parameter specifications

if self.N_b is None:

sys.exit("Error: Need to specify N_b for sticky_Rouse ().")

elif self.N_x is None:
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sys.exit("Error: Need to specify N_x for sticky_Rouse ().")

elif self.t_0 is None:

sys.exit("Error: Need to specify t_0 for sticky_Rouse ().")

elif self.t_x is None:

sys.exit("Error: Need to specify t_x for sticky_Rouse ().")

# Smallest timescale associated with this relaxation function

self.timescale = np.min([self.t_0 , self.t_x])

# Relaxation function

def g(self , t, tau):

g_out = np.zeros(omega.shape)

for p in range(int(self.N_x + 1), int(self.N_b + 1)):

t_p = self.t_0*(self.N_b/p)**2

g_out = g_out + np.exp(-(t - tau)/t_p)/self.N_b

for p in range(1, int(self.N_x + 1)):

t_p_x = self.t_x*(self.N_x/p) ** 2

g_out = g_out + (1 + self.G_x_over_G_0)*np.exp(-(t - tau)/t_p_x)/self.N_b

return g_out

# Relative time derivative of the relaxation function

def d_g_d_tau(self , t, tau):

d_g_d_tau_out = np.zeros(omega.shape)

for p in range(int(self.N_x + 1), int(self.N_b + 1)):

t_p = self.t_0*(self.N_b/p)**2

d_g_d_tau_out = d_g_d_tau_out + np.exp(-(t - tau)/t_p)/self.N_b/t_p

for p in range(1, int(self.N_x + 1)):

t_p_x = self.t_x*(self.N_x/p) ** 2

d_g_d_tau_out = d_g_d_tau_out + (1 + self.G_x_over_G_0)*np.exp(-(t - tau)/t_p_x)/self.N_b/t_p_x

return d_g_d_tau_out

# Storage function

def g_p(self , omega):

g_p_out = np.zeros(omega.shape)

for p in range(int(self.N_x + 1), int(self.N_b + 1)):

t_p = self.t_0*(self.N_b/p)**2

g_p_out = g_p_out + ((omega*t_p)** 2/(1 + (omega*t_p)**2))/self.N_b

for p in range(1, int(self.N_x + 1)):

t_p_x = self.t_x*(self.N_x/p) ** 2

g_p_out = g_p_out + (1 + self.G_x_over_G_0)*((omega*t_p_x)** 2/(1 + (omega*t_p_x) **2))/self.N_b

return g_p_out

# Loss function

def g_pp(self , omega):

g_pp_out = np.zeros(omega.shape)

for p in range(int(self.N_x + 1), int(self.N_b + 1)):

t_p = self.t_0*(self.N_b/p)**2

g_pp_out = g_pp_out + (omega*t_p/(1 + (omega*t_p)**2))/self.N_b

for p in range(1, int(self.N_x + 1)):

t_p_x = self.t_x*(self.N_x/p) ** 2

g_pp_out = g_pp_out + (1 + self.G_x_over_G_0)*(omega*t_p_x/(1 + (omega*t_p_x) **2))/self.N_b

return g_pp_out

plotting

The plotting module allows object for plotting to be quickly created, i.e.

plotter_object = plotter(plot_directory =’./’)

where the default for the optional keyword argument is shown (the current directory). The plotter
class is the only instance requiring matplotlib in this package. The single-chain model functions
can be plotted using

plotter_object.plot_single_chain(single_chain_model)

and all the results from deforming the network using

plotter_object.plot_results(network_model, results)

If only the nondimensional stress-stretch response of the network is desired, one can use
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plotter_object.plot_results(None, results)

The Python module file plotting.py is printed below:
# ###############################################################################################################################

# General setup

# ###############################################################################################################################

# Import libraries

import numpy as np

import matplotlib.pyplot as plt

# ###############################################################################################################################

# Plotting class

# ###############################################################################################################################

class plotter:

def __init__(self , plot_directory = ’./’):

self.plot_directory = plot_directory

# For general plotting

def save_current_figure(self , xlabel , ylabel , name):

plt.xlabel(xlabel)

plt.ylabel(ylabel)

plt.tight_layout ()

plt.show()

fig = plt.gcf()

plt.savefig(self.plot_directory + name)

plt.close()

# ###########################################################################################################################

# Function for plotting deformation

# ###########################################################################################################################

def plot_deformation(self , F, total_time_in_seconds , csv_directory = None):

# Enumerate time

t_temp = np.linspace(0, total_time_in_seconds , int(1e5))

# Plot the deformation

fig = plt.figure ()

plt.plot(t_temp , F(t_temp))

self.save_current_figure(’$t$ [seconds]’, ’$F(t)$’, ’F(t).png’)

# Save values to .csv if opted

if csv_directory is not None:

self.save_csv(csv_directory + ’deformation.csv’, t_temp , F(t_temp))

# ###########################################################################################################################

# Function for plotting single -chain functions

# ###########################################################################################################################

def plot_single_chain(self , single_chain_model , J_sw = None , csv_directory = None):

# Enumerate stretch

if np.isinf(single_chain_model.gamma_TS):

gamma_plot = np.linspace(0, 1.5, 1000)

else:

gamma_plot = np.linspace(0, single_chain_model.gamma_TS , 1000)

# Plot the nondimensional mechanical response

fig = plt.figure ()

plt.plot(gamma_plot , single_chain_model.eta(gamma_plot))

self.save_current_figure(’$\gamma$ ’, ’$\eta(\ gamma)$’, ’eta.png’)

# Plot the nondimensional equilibrium distribution

fig = plt.figure ()

plt.plot(gamma_plot , single_chain_model.P_A_eq(gamma_plot), label = ’original ’)

if J_sw is not None:

plt.plot(gamma_plot , single_chain_model.P_A_eq(gamma_plot/J_sw **(1/3))/J_sw , label = ’swollen ’)

plt.legend ()

self.save_current_figure(’$\gamma$ ’, r’$\mathscr{P}_A^{eq}(\ gamma)$’, ’P_A_eq.png’)

# Plot the nondimensional equilibrium radial distribution function

fig = plt.figure ()

plt.plot(gamma_plot , single_chain_model.g_A_eq(gamma_plot), label = ’original ’)

if J_sw is not None:

plt.plot(gamma_plot , single_chain_model.g_A_eq(gamma_plot/J_sw **(1/3))/J_sw **(1/3), label = ’swollen ’)

plt.legend ()

self.save_current_figure(’$\gamma$ ’, r’$\mathscr{g}_A^{eq}(\ gamma)$’, ’g_A_eq.png’)

# Plot the reaction rate coefficient function

if np.all(np.isclose(single_chain_model.k(gamma_plot[:-2]), single_chain_model.k_0)) == False:

fig = plt.figure ()

plt.plot(gamma_plot , single_chain_model.k(gamma_plot))

plt.yscale(’log’)

self.save_current_figure(’$\gamma$ ’, ’$k(\gamma)$ [1/seconds]’, ’k.png’)

# Save values to .csv if opted

if csv_directory is not None:
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y_tuple = single_chain_model.eta(gamma_plot), single_chain_model.P_A_eq(gamma_plot), \

single_chain_model.g_A_eq(gamma_plot), single_chain_model.k(gamma_plot)

self.save_csv(csv_directory + ’single_chain.csv’, gamma_plot , y_tuple)

# ###########################################################################################################################

# Function to save plot values to .csv

# ###########################################################################################################################

def save_csv(self , csv_file , x, y_tuple):

# Initialization also clears any previous results

open(csv_file , "w").close ()

# Save values

f = open(csv_file , "a")

for index in range(len(x)):

f.write("%.8e\t" % x[index])

if isinstance(y_tuple , tuple):

for y in y_tuple:

f.write("%.8e\t" % y[index])

else:

f.write("%.8e\t" % y_tuple[index])

f.write("\n")

f.close()

# ###########################################################################################################################

# Function for plotting results

# ###########################################################################################################################

def plot_results(self , deformation_object , results , use_nominal = False , n_over_beta = None , \

data_F_stress = None , F_stress_1 = None , F_stress_2 = None , F_stress_3 = None):

# Retrieve results

t = results[0]

F = results[1]

beta_sigma_over_n = results[5]

# Simpler plotting if given None as the deformation_object

if deformation_object is not None:

# Plot the component of the stress solution if ignoring chain breaking

if deformation_object.ignore_yield is True:

# Plot the homogeneous and particular solutions for the stress

beta_sigma_h_over_n = results[3]

beta_sigma_p_over_n = results[4]

fig = plt.figure ()

plt.plot(F, beta_sigma_h_over_n , label = ’homogeneous ’)

plt.plot(F, beta_sigma_p_over_n , label = ’particular ’)

plt.plot(F, beta_sigma_over_n , label = ’total’)

plt.legend ()

self.save_current_figure(’$F(t)$’, r’$\beta\sigma(t)/n$’, ’sigma_hpt(F).png’)

fig = plt.figure ()

plt.plot(t, beta_sigma_h_over_n , label = ’homogeneous ’)

plt.plot(t, beta_sigma_p_over_n , label = ’particular ’)

plt.plot(t, beta_sigma_over_n , label = ’total’)

plt.legend ()

self.save_current_figure(’$t$ [seconds]’, r’$\beta\sigma(t)/n$’, ’sigma_hpt(t).png’)

# Typical plotting

else:

# Plot total probability of intact chains

P_A_tot = results[2]

fig = plt.figure ()

plt.plot(F, deformation_object.initialized_single_chain_model.P_A_tot_eq + 0*t, linestyle = ’dashed ’)

plt.plot(F, P_A_tot)

self.save_current_figure(’$F(t)$’, ’$P_\mathrm{A}^\ mathrm{tot}(t)$’, ’P_A_tot(F).png’)

fig = plt.figure ()

plt.plot(t, deformation_object.initialized_single_chain_model.P_A_tot_eq + 0*t, linestyle = ’dashed ’)

plt.plot(t, P_A_tot)

self.save_current_figure(’$t$ [seconds]’, ’$P_\mathrm{A}^\ mathrm{tot}(t)$’, ’P_A_tot(t).png’)

# Plot total rate of breaking and reforming chains

total_rate_break = results[3]

total_rate_reform = results[4]

fig = plt.figure ()

plt.plot(F, total_rate_break , label = ’breaking rate’)

plt.plot(F, total_rate_reform , label = ’reforming rate’)

plt.plot(F, total_rate_reform + total_rate_break , label = ’net rate’)

plt.legend ()

self.save_current_figure(’$F(t)$’, r’$\frac{d}{dt}\,P_\mathrm{A}^\ mathrm{tot}(t)$’, ’d_P_A_tot_dt(F).png’)

fig = plt.figure ()

plt.plot(t, total_rate_break , label = ’breaking rate’)

plt.plot(t, total_rate_reform , label = ’reforming rate’)

plt.plot(t, total_rate_reform + total_rate_break , label = ’net rate’)

plt.legend ()

self.save_current_figure(’$t$ [seconds]’, \

r’$\frac{d}{dt}\,P_\mathrm{A}^\ mathrm{tot}(t)$’, ’d_P_A_tot_dt(t).png’)
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# Plot the stress

fig = plt.figure ()

if n_over_beta is None:

n_over_beta = 1

y_label = r’$\beta\sigma(t)/n$’
else:

y_label = r’$\sigma(t)$’

if use_nominal is True:

y_label = ’nominal ’ + y_label

stress = n_over_beta*beta_sigma_over_n/F

else:

stress = n_over_beta*beta_sigma_over_n

# Plot the stress data

if data_F_stress is not None:

plt.plot(data_F_stress[0], data_F_stress[1], ’o’)

# Plot any extra stress

if F_stress_1 is not None:

if use_nominal is True:

sigma = F_stress_1[1]/F_stress_1[0]

else:

sigma = F_stress_1[1]

plt.plot(F_stress_1[0], sigma , ’--’)

if F_stress_2 is not None:

if use_nominal is True:

sigma = F_stress_2[1]/F_stress_2[0]

else:

sigma = F_stress_2[1]

plt.plot(F_stress_2[0], sigma , ’--’)

if F_stress_3 is not None:

if use_nominal is True:

sigma = F_stress_3[1]/F_stress_3[0]

else:

sigma = F_stress_3[1]

plt.plot(F_stress_3[0], sigma , ’--’)

# Plot the stress as a function of deformation

plt.plot(F, stress)

self.save_current_figure(’$F(t)$’, y_label , ’sigma(F).png’)

# Plot the stress as a function of time

if deformation_object is not None:

fig = plt.figure ()

plt.plot(t, stress)

self.save_current_figure(’$t$ [seconds]’, y_label , ’sigma(t).png’)

C.6.2 Simple Example

This subsection details the following example script demonstrating basic usage of this package:

# Import the library

from chain_breaking_polymer_networks import *

# Create the single -chain model

single_chain_model = Morse_FJC(N_b = 1, N_b_H = 8, kappa = 2e2 , kappa_H = 5e2 , beta_u_b = 1e2 , k_0 = 1e-2, beta_Delta_Psi_0 = 2)

# Plot the single -chain model

plotter_object = plotter ()

plotter_object.plot_single_chain(single_chain_model)

# Define the deformation

strain_rate = 1

maximum_strain = 8

total_time_in_seconds = 2*maximum_strain/strain_rate

def F(t):

return 1 + strain_rate*t*np.heaviside(maximum_strain - strain_rate*t, 0.5) \

+ (2*maximum_strain - strain_rate*t)*np.heaviside(strain_rate*t - maximum_strain , 0.5)

# Plot the deformation

plotter_object.plot_deformation(F, total_time_in_seconds)

# Apply the deformation and solve

network_model = deform_network(F, ’uniaxial ’, total_time_in_seconds , single_chain_model , num_grid_suggestion = 513)

results = network_model.solve(csv_directory = ’./’)

# Plot the results

plotter_object.plot_results(network_model , results)

After importing the package, executing the line
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single_chain_model = Morse_FJC(N_b =1, N_b_H = 8, kappa = 2e2, \

kappa_H = 5e2, beta_u_b = 1e2, k_0 = 1e-2, beta_Delta_Psi_0 = 2)

we create the Morse-FJC single-chain model consisting of:

• 1 breakable link with nondimensional stiffness 200 and energy 100,

• 8 unbreakable links with nondimensional stiffness 500,

• an initial reaction rate coefficient of 0.01/s, and

• a nondimensional free energy change of 2 when breaking.

(a) (b)

(c) (d)

Figure C.4: Plots of single-chain functions generated by the plot_single_chain attribute of the plotter object.
(a) the nondimensional single-chain mechanical response η(γ), (b) the nondimensional equilibrium distribution of
intact chains PA(γ), (c) the nondimensional equilibrium radial distribution of intact chains 4πγ2PA(γ), and (d) the
net forward reaction rate coefficient function k(γ), each as a function of the nondimensional end-to-end length γ.
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The plotting object is then created and used to plot (saving the images, shown in Fig. C.4, in the
local directory) each relevant single-chain function via:

plotter_object = plotter()

plotter_object.plot_single_chain(single_chain_model)

Choosing uniaxial stress (default in deform_network), the applied stretch is specified as a function
of time here:

strain_rate = 1

maximum_strain = 8

total_time_in_seconds = 2 * maximum_strain/strain_rate

def F(t):

return 1 + strain_rate*t*np.heaviside(maximum_strain - strain_rate*t, 0.5)\

+ (2* maximum_strain - strain_rate*t)* \

np.heaviside(strain_rate*t - maximum_strain, 0.5)

This corresponds to a normalized strain rate until a stretch of 9 is reached, and subsequently re-
versing the rate until at a stretch of unity. Using the same plotting object, this applied stretch is
plotted (see Fig. C.5) as a function of time:

plotter_object.plot_deformation(F, total_time_in_seconds)

Figure C.5: The applied deformation F as a function of time t from plotter.plot_deformation.

The model for the network is created by simultaneously specifying the applied stretch and traction
boundary condition, the total time, the single-chain model, and increasing the suggestion for the
number of spatial grid points in each direction:

network_model = deform_network(F, ’uniaxial’, total_time_in_seconds, \

single_chain_model, num_grid_suggestion = 513)
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The network model is solved and results are returned as a tuple, while also writing these results to
a .csv file in the local directory:

results = network_model.solve(csv_directory =’./’)

Using the same plotting object, these results (stress, total intact-chain probability, total break-
ing/reforming/net rate) are plotted (see Fig. C.6):

plotter_object.plot_results(network_model, results)

(a) (b)

(c) (d)

Figure C.6: Plots of the various results generated by the plotter object after solving the network model. (a) The
nondimensional stress βσ/n as a function of the deformation F and (b) of the time t, (c) the intact chain fraction
P tot
A (t) as a function of t, and (d) the total breaking (forward), reforming (reverse), and net (forward + reverse) rate

of change of P tot
A (t) as a function of t.
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C.6.3 Archived scripts

Here we list each Python script used to obtain the macroscopic theoretical results in Figs. 5.6–5.11.
Below is the script corresponding to Fig. 5.6:

# Import the package

from chain_breaking_polymer_networks import *

# Create the single -chain model

single_chain_model = Morse_FJC(N_b = 1, N_b_H = 38, beta_u_b = 61.57, kappa = 9000 ,

kappa_H = 6000 , k_0 = 1e-88, beta_Delta_Psi_0 = 5, varsigma = 4)

# Volumetric swelling ratio

J_sw = 15.625

# Plot the single -chain model

output_directory = ’output_TN/’

plotter_object = plotter(plot_directory = output_directory)

plotter_object.plot_single_chain(single_chain_model , J_sw = J_sw , csv_directory = output_directory)

# Define the deformation

lambda_dot = 0.025

total_time_in_seconds = 15/lambda_dot

def F(t):

return 1 + lambda_dot*t*np.heaviside(0.5 - lambda_dot*t, 0.5) \

+ (1 - lambda_dot*t)*np.heaviside(lambda_dot*t - 0.5, 0.5)*np.heaviside(1 - lambda_dot*t, 0.5) \

+ (lambda_dot*t - 1)*np.heaviside(lambda_dot*t - 1, 0.5)*np.heaviside(2 - lambda_dot*t, 0.5) \

+ (3 - lambda_dot*t)*np.heaviside(lambda_dot*t - 2, 0.5)*np.heaviside(3 - lambda_dot*t, 0.5) \

+ (lambda_dot*t - 3)*np.heaviside(lambda_dot*t - 3, 0.5)*np.heaviside(4.5 - lambda_dot*t, 0.5) \

+ (6 - lambda_dot*t)*np.heaviside(lambda_dot*t - 4.5, 0.5)*np.heaviside(6 - lambda_dot*t, 0.5) \

+ (lambda_dot*t - 6)*np.heaviside(lambda_dot*t - 6, 0.5)*np.heaviside(8 - lambda_dot*t, 0.5) \

+ (10 - lambda_dot*t)*np.heaviside(lambda_dot*t - 8, 0.5)*np.heaviside(10 - lambda_dot*t, 0.5) \

+ (lambda_dot*t - 10)*np.heaviside(lambda_dot*t - 10 , 0.5)*np.heaviside(12.5 - lambda_dot*t, 0.5) \

+ (15 - lambda_dot*t)*np.heaviside(lambda_dot*t - 12.5, 0.5)*np.heaviside(15 - lambda_dot*t, 0.5)

# Plot the deformation

plotter_object.plot_deformation(F, total_time_in_seconds , csv_directory = output_directory)

# Apply the deformation and solve

deformation_object = deform_network(F, ’uniaxial ’, total_time_in_seconds , single_chain_model , J_sw = J_sw)

results = deformation_object.solve(csv_directory = output_directory)

# Combine with a Neo -Hookean model for the filler network

E = 1.5

n_over_beta_1 = 0.2

n_over_beta_23 = E/3 - n_over_beta_1

F = results[1]

sigma_1 = n_over_beta_1/single_chain_model.P_A_tot_eq*results[5]

F_stress_23 = F, n_over_beta_23*(F**2 - 1/F)

F_stress_tot = F, F_stress_23[1] + sigma_1

# Plot the results with the experimental data

filename = ’data/ducrot_fig4c_stress.csv’

data_F_stress = np.genfromtxt(filename , usecols = (0)), np.genfromtxt(filename , usecols = (1))

plotter_object.plot_results(deformation_object , results , n_over_beta = n_over_beta_1 , \

data_F_stress = data_F_stress , F_stress_1 = F_stress_23 , F_stress_2 = F_stress_tot)

Below is the script corresponding to the transient model in Fig. 5.7(a):

# Import the package

from chain_breaking_polymer_networks import *

# Create the single -chain model

single_chain_model = ideal(k_0 = 0.37)

# Plot the single -chain model

output_directory = ’output_Long_transient/’

plotter_object = plotter(plot_directory = output_directory)

plotter_object.plot_single_chain(single_chain_model)

# Define the deformation

lambda_dot = 0.03

Delta_lambda = 1

total_time_in_seconds = 2*Delta_lambda/lambda_dot

def F(t):

return 1 + lambda_dot*t*np.heaviside(Delta_lambda/lambda_dot - t, 0.5) \

+ (2*Delta_lambda - lambda_dot*t)*np.heaviside(t - Delta_lambda/lambda_dot , 0.5)

# Plot the deformation

plotter_object.plot_deformation(F, total_time_in_seconds)

# Apply the deformation and solve

deformation_object = deform_network(F, ’uniaxial ’, total_time_in_seconds , single_chain_model , \

max_F_dot = lambda_dot , use_spatial_grid = False , ignore_yield = True)

results = deformation_object.solve(csv_directory = output_directory)

# Post - processing

n_over_beta = 24.15



C.6. Python package 167

fraction = 0.16

F = results[1]

sigma_1 = n_over_beta*(1 - fraction)*results[5]

sigma_2 = n_over_beta*fraction*(F**2 - 1/F)

sigma_tot = sigma_1 + sigma_2

F_stress_2 = F, sigma_2

F_stress_tot = F, sigma_tot

# Plot the results with the experimental data

data_F_stress = np.genfromtxt(’data/long2014_2e.csv’, usecols = (0)), np.genfromtxt(’data/long2014_2e.csv’, usecols = (1))

plotter_object.plot_results(deformation_object , results , n_over_beta = n_over_beta , use_nominal = True , \

data_F_stress = data_F_stress , F_stress_1 = F_stress_tot , F_stress_2 = F_stress_2)

Below is the script corresponding to the adjusted model in Fig. 5.7(a):

# Import the package

from chain_breaking_polymer_networks import *

# Create the single -chain model

single_chain_model = ideal()

# Create the relaxation function

relaxation_function = Long_et_al_2014(alpha = 2.6, t_R = 0.6, x_p = 0.1)

# Plot the single -chain model

output_directory = ’output_Long_relax/’

plotter_object = plotter(plot_directory = output_directory)

plotter_object.plot_single_chain(single_chain_model)

# Define the deformation

Delta_lambda = 1

lambda_dot = 0.03

total_time_in_seconds = 2*Delta_lambda/lambda_dot

def F(t):

return 1 + lambda_dot*t*np.heaviside(Delta_lambda/lambda_dot - t, 0.5) \

+ (2*Delta_lambda - lambda_dot*t)*np.heaviside(t - Delta_lambda/lambda_dot , 0.5)

# Plot the deformation

plotter_object.plot_deformation(F, total_time_in_seconds)

# Apply the deformation and solve

deformation_object = deform_network(F, ’uniaxial ’, total_time_in_seconds , single_chain_model , \

relaxation_function = relaxation_function , max_F_dot = lambda_dot , use_spatial_grid = False , ignore_yield = True)

results = deformation_object.solve(csv_directory = output_directory)

# Plot the results with the experimental data

data_F_stress = np.genfromtxt(’data/long2014_2e.csv’, usecols = (0)), np.genfromtxt(’data/long2014_2e.csv’, usecols = (1))

plotter_object.plot_results(deformation_object , results , n_over_beta = 24.15, use_nominal = True , data_F_stress = data_F_stress)

Below is the script corresponding to the transient model in Fig. 5.7(b):

# Import the package

from chain_breaking_polymer_networks import *

# Create the single -chain models

x_p = 5.85e-2

single_chain_model_1 = EFJC(N_b = 50 , kappa = 40, k_0 = 0.12)

single_chain_model_2 = EFJC(N_b = 50 , kappa = 40)

# Plot the single -chain model

output_directory = ’output_PVA_transient/’

plotter_object = plotter(plot_directory = output_directory)

plotter_object.plot_single_chain(single_chain_model_1)

# Loop over all deformation rates

order = [5, 1, 4, 0, 3, 2]

lambda_dot_all = [0.90, 0.10 , 0.03, 0.01, 3e-3, 1e-4]

Delta_lambda_all = [0.65 , 1.55, 2.66, 2.90 , 3.90, 4.56]

for index in order:

# Define the deformation

lambda_dot = lambda_dot_all[index]

Delta_lambda = Delta_lambda_all[index]

total_time_in_seconds = Delta_lambda/lambda_dot

def F(t):

return 1 + lambda_dot*t

# Take larger timesteps for very slow deformation rates

if lambda_dot == 0.003:

nondim_dt = 1e0

elif lambda_dot == 0.0001:

nondim_dt = 5e1

else:

nondim_dt = 1e-2

# Output file names

output_directory_index = output_directory + str(lambda_dot) + ’_’

plotter_object = plotter(plot_directory = output_directory_index)
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# Apply the deformation and solve

results_1 = deform_network(F, ’uniaxial ’, total_time_in_seconds , single_chain_model_1 , \

max_F_dot = lambda_dot , use_spatial_grid = False , ignore_yield = True , \

nondimensional_timestep_suggestion = nondim_dt).solve(csv_directory = output_directory_index + ’1_’)

results_2 = deform_network(F, ’uniaxial ’, total_time_in_seconds , single_chain_model_2 , \

max_F_dot = lambda_dot , use_spatial_grid = False , ignore_yield = True , \

).solve(csv_directory = output_directory_index + ’2_’)

# Combine the results

results_2_5th_interp = np.interp(results_1[1], results_2[1], results_2[5])

results = results_1[0], results_1[1], results_1[2], results_1[3], results_1[4], \

x_p*results_2_5th_interp + (1 - x_p)*results_1[5]

# Plot the results with the experimental data

filename = ’data/mayumi_3a_0p ’ + str(lambda_dot)[2:] + ’.csv’

data_F_stress = np.genfromtxt(filename , usecols = (0)), np.genfromtxt(filename , usecols = (1))

plotter_object.plot_results(None , results , n_over_beta = 37.78, use_nominal = True , data_F_stress = data_F_stress)

Below is the script corresponding to the adjusted model in Fig. 5.7(b):

# Import the package

from chain_breaking_polymer_networks import *

# Create the single -chain model

single_chain_model = EFJC(N_b = 50, kappa = 40)

# Create the relaxation function

relaxation_function = Long_et_al_2014(alpha = 3.23, t_R = 1.99 , x_p = 4.68e-2)

# Plot the single -chain model

output_directory = ’output_PVA/’

plotter_object = plotter(plot_directory = output_directory)

plotter_object.plot_single_chain(single_chain_model)

# Loop over all deformation rates

order = [4, 0, 1, 2, 3, 5]

lambda_dot_all = [0.90, 0.10 , 0.03, 0.01, 3e-3, 1e-4]

Delta_lambda_all = [0.65 , 1.55, 2.66, 2.90 , 3.90, 4.56]

for index in order:

# Define the deformation

lambda_dot = lambda_dot_all[index]

Delta_lambda = Delta_lambda_all[index]

total_time_in_seconds = Delta_lambda/lambda_dot

def F(t):

return 1 + lambda_dot*t

# Take larger timesteps for very slow deformation rates

if lambda_dot == 0.003:

nondim_dt = 1e0

elif lambda_dot == 0.0001:

nondim_dt = 5e1

else:

nondim_dt = 1e-2

# Output file names

output_directory_index = output_directory + str(lambda_dot) + ’_’

plotter_object = plotter(plot_directory = output_directory_index)

# Apply the deformation and solve

deformation_object = deform_network(F, ’uniaxial ’, total_time_in_seconds , single_chain_model , \

relaxation_function = relaxation_function , max_F_dot = lambda_dot , use_spatial_grid = False , ignore_yield = True , \

nondimensional_timestep_suggestion = nondim_dt)

results = deformation_object.solve(csv_directory = output_directory_index)

# Plot the results with the experimental data

filename = ’data/mayumi_3a_0p ’ + str(lambda_dot)[2:] + ’.csv’

data_F_stress = np.genfromtxt(filename , usecols = (0)), np.genfromtxt(filename , usecols = (1))

plotter_object.plot_results(None , results , n_over_beta = 37.78, use_nominal = True , data_F_stress = data_F_stress)

Below is the script corresponding to the general model in Fig. 5.8:

# Import the package

from chain_breaking_polymer_networks import *

# Create the single -chain model

single_chain_model = Morse_FJC(N_b = 1, N_b_H = 8, kappa = 200 , kappa_H = 500 , \

beta_u_b = 100 , k_0 = 1e-2, varsigma = 1, beta_Delta_Psi_0 = 5)

# Plot the single -chain model

output_directory = ’output_11/’

plotter_object = plotter(plot_directory = output_directory)

plotter_object.plot_single_chain(single_chain_model)

# Define the deformation

Delta = 2

total_time_in_seconds = 8*Delta

def F(t):

return 1 + t*np.heaviside(Delta - t, 0.5) + Delta*np.heaviside(t - Delta , 0.5) \
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+ (t - 2*Delta)*np.heaviside(t - 2*Delta , 0.5)*np.heaviside(3*Delta - t, 0.5) + Delta*np.heaviside(t - 3*Delta , 0.5) \

+ (4*Delta - t)*np.heaviside(t - 4*Delta , 0.5)*np.heaviside(5*Delta - t, 0.5) - Delta*np.heaviside(t - 5*Delta , 0.5) \

+ (6*Delta - t)*np.heaviside(t - 6*Delta , 0.5)*np.heaviside(7*Delta - t, 0.5) - Delta*np.heaviside(t - 7*Delta , 0.5)

# Plot the deformation

plotter_object.plot_deformation(F, total_time_in_seconds)

# Apply the deformation and solve

deformation_object = deform_network(F, ’uniaxial ’, total_time_in_seconds , single_chain_model , num_grid_suggestion = 1025)

results = deformation_object.solve(csv_directory = output_directory , checkpoint_directory = output_directory)

# Plot the results

plotter_object.plot_results(deformation_object , results)

Below is the script corresponding to the transient model (with critical extension) in Fig. 5.8:

# Import the package

from chain_breaking_polymer_networks import *

# Create the single -chain model

single_chain_model = Morse_FJC(N_b = 1, N_b_H = 8, kappa = 200 , kappa_H = 500 , \

beta_u_b = 100 , k_0 = 1e-2, varsigma = 1, beta_Delta_Psi_0 = 5, gamma_c = 1.1459)

# Plot the single -chain model

output_directory = ’output_12/’

plotter_object = plotter(plot_directory = output_directory)

plotter_object.plot_single_chain(single_chain_model)

# Define the deformation

Delta = 2

total_time_in_seconds = 8*Delta

def F(t):

return 1 + t*np.heaviside(Delta - t, 0.5) + Delta*np.heaviside(t - Delta , 0.5) \

+ (t - 2*Delta)*np.heaviside(t - 2*Delta , 0.5)*np.heaviside(3*Delta - t, 0.5) + Delta*np.heaviside(t - 3*Delta , 0.5) \

+ (4*Delta - t)*np.heaviside(t - 4*Delta , 0.5)*np.heaviside(5*Delta - t, 0.5) - Delta*np.heaviside(t - 5*Delta , 0.5) \

+ (6*Delta - t)*np.heaviside(t - 6*Delta , 0.5)*np.heaviside(7*Delta - t, 0.5) - Delta*np.heaviside(t - 7*Delta , 0.5)

# Plot the deformation

plotter_object.plot_deformation(F, total_time_in_seconds)

# Apply the deformation and solve

deformation_object = deform_network(F, ’uniaxial ’, total_time_in_seconds , single_chain_model , num_grid_suggestion = 1025)

results = deformation_object.solve(csv_directory = output_directory , checkpoint_directory = output_directory)

# Plot the results

plotter_object.plot_results(deformation_object , results)

Below is the script corresponding to the rate-independent irreversible model in Fig. 5.8:

# Import the package

from chain_breaking_polymer_networks import *

# Create the single -chain model

single_chain_model = Morse_FJC(N_b = 1, N_b_H = 8, kappa = 200 , kappa_H = 500 , \

beta_u_b = 100 , k_0 = 1e-88, varsigma = 1, beta_Delta_Psi_0 = 5, gamma_c = 1.1459)

# Plot the single -chain model

output_directory = ’output_13/’

plotter_object = plotter(plot_directory = output_directory)

plotter_object.plot_single_chain(single_chain_model)

# Define the deformation

Delta = 2

total_time_in_seconds = 8*Delta

def F(t):

return 1 + t*np.heaviside(Delta - t, 0.5) + Delta*np.heaviside(t - Delta , 0.5) \

+ (t - 2*Delta)*np.heaviside(t - 2*Delta , 0.5)*np.heaviside(3*Delta - t, 0.5) + Delta*np.heaviside(t - 3*Delta , 0.5) \

+ (4*Delta - t)*np.heaviside(t - 4*Delta , 0.5)*np.heaviside(5*Delta - t, 0.5) - Delta*np.heaviside(t - 5*Delta , 0.5) \

+ (6*Delta - t)*np.heaviside(t - 6*Delta , 0.5)*np.heaviside(7*Delta - t, 0.5) - Delta*np.heaviside(t - 7*Delta , 0.5)

# Plot the deformation

plotter_object.plot_deformation(F, total_time_in_seconds)

# Apply the deformation and solve

deformation_object = deform_network(F, ’uniaxial ’, total_time_in_seconds , single_chain_model , num_grid_suggestion = 1025)

results = deformation_object.solve(csv_directory = output_directory , checkpoint_directory = output_directory)

# Plot the results

plotter_object.plot_results(deformation_object , results)

Below is the base script corresponding to the parameter studies in Figs. 5.9 and 5.10:

# Import the package

from chain_breaking_polymer_networks import *

# Create the single -chain model

single_chain_model = Morse_FJC(N_b = 1, N_b_H = 8, kappa = 200 , kappa_H = 500 , \

beta_u_b = 100 , k_0 = 1e-2, varsigma = 1, beta_Delta_Psi_0 = 5)
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# Plot the single -chain model

output_directory = ’output_18/100_’

plotter_object = plotter(plot_directory = output_directory)

plotter_object.plot_single_chain(single_chain_model)

# Define the deformation

Delta = 8

total_time_in_seconds = 2*Delta

def F(t):

return 1 + t*np.heaviside(Delta - t, 0.5) + (2*Delta - t)*np.heaviside(t - Delta , 0.5)

# Plot the deformation

plotter_object.plot_deformation(F, total_time_in_seconds)

# Apply the deformation and solve

deformation_object = deform_network(F, ’uniaxial ’, total_time_in_seconds , single_chain_model , num_grid_suggestion = 1025)

results = deformation_object.solve(csv_directory = output_directory)

# Plot the results

plotter_object.plot_results(deformation_object , results)

Below is the script corresponding to Fig. 5.11:

# Import the package

from chain_breaking_polymer_networks import *

# Create the single -chain model

single_chain_model = Morse_FJC(N_b = 1, N_b_H = 9, kappa = 200 , kappa_H = 400 , \

beta_u_b = 100 , k_0 = 2e-4, beta_Delta_Psi_0 = 8.55)

# Plot the single -chain model

output_directory = ’output_Cu/1.5_’

plotter_object = plotter(plot_directory = output_directory)

plotter_object.plot_single_chain(single_chain_model)

# Define the deformation

Delta = 1.5

lambda_dot = 8.4/60

total_time_in_seconds = 2*Delta/lambda_dot

def F(t):

return 1 + lambda_dot*t*np.heaviside(total_time_in_seconds/2 - t, 0.5) \

+ (2*Delta - lambda_dot*t)*np.heaviside(t - total_time_in_seconds/2, 0.5)

# Plot the deformation

plotter_object.plot_deformation(F, total_time_in_seconds)

# Apply the deformation and solve

deformation_object = deform_network(F, ’uniaxial ’, total_time_in_seconds , single_chain_model , max_F_dot = lambda_dot , \

nondimensional_timestep_suggestion = 1e-1)

results = deformation_object.solve(csv_directory = output_directory)

# Plot the results with the experimental data

filename = ’data/lin_5b_all.csv’

data_F_stress = np.genfromtxt(filename , usecols = (0)), np.genfromtxt(filename , usecols = (1))

plotter_object.plot_results(deformation_object , results , \

n_over_beta = 0.96/2, use_nominal = True , data_F_stress = data_F_stress)

C.7 Specialized Python package

In order to allow theoretical modeling of the rotation and reloading of the mechanophore-containing
double network samples in the last part of Sec. C.5.2 (see Figs. C.2 and C.3), a specialized Python

implementation of the model was created. In this specialized implementation, symmetry is neither
used to compute spatial integrals nor is it used to calculate the unknown components of the de-
formation gradient. Instead, it employs a solver to iteratively compute the stress given the past
deformation history and vary the unknown deformation gradient components until the traction
boundary conditions are satisfied. It is currently only applicable when using the EFJC model and
rate-independent irreversible breaking, in addition to the deformation gradient existing in principal
coordinates. In the future it will be fully generalized, although certain cases will quickly become
computationally prohibitive, so the original implementation is still highly recommended.
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The Python module file single_chain.py for the specialized implementation is printed below:

# ###############################################################################################################################

# General setup

# ###############################################################################################################################

# Import libraries

import sys

import numpy as np

from scipy.integrate import quad

from scipy.interpolate import interp1d

from scipy.optimize import minimize_scalar

# Interpolation parameters

num_interp = int(3e3)

interp_kind_1D = ’cubic’

# Numerical tolerance parameters

cutoff_for_log_over_sinh = 3e1

cutoff_stretch_for_harmonic_eta_EFJC = 3

minimum_exponent = np.log(sys.float_info.min)/np.log(10)

maximum_exponent = np.log(sys.float_info.max)/np.log(10)

eta_small = 10 ** minimum_exponent

# Function to invert a function

def inv_fun_1D(x_query , fun , bounds = None):

# Change method depending on whether bounds are involved

if bounds is None:

return minimize_scalar(lambda x: np.abs(fun(x) - x_query)).x

else:

return minimize_scalar(lambda x: np.abs(fun(x) - x_query), bounds = bounds , method = ’bounded ’).x

# Function to create interpolation function from stored function

def interp_fun_1D(x_store , y_store):

return interp1d(x_store , y_store , kind = interp_kind_1D , bounds_error = False , fill_value = np.nan)

# Function to avoid overflow when computing ln(x/sinh(x))

def log_over_sinh(x):

# Determine when argument is sufficiently large

where_x_large = np.nan_to_num(x, nan = -1) > cutoff_for_log_over_sinh

log_of_x_over_sinh_x = np.zeros(x.shape)

# Use asymptotic relation valid for sufficiently large arguments

if where_x_large.any():

log_of_x_over_sinh_x[where_x_large] = np.log(2*x[where_x_large]) - x[where_x_large]

# Compute analytically otherwise , and zero where argument is zero

where_x_zero = x == 0

where_compute = ~( where_x_large + where_x_zero)

if where_compute.any():

log_of_x_over_sinh_x[where_compute] = np.log(x[where_compute]/np.sinh(x[where_compute]))

return log_of_x_over_sinh_x

# Hyperbolic cotangent function

def coth_safe(eta):

eta = np.where(eta == 0, eta_small , eta)

return 1/np.tanh(eta)

# Langevin function

def Langevin(eta):

eta = np.where(eta == 0, eta_small , eta)

return 1/np.tanh(eta) - 1/eta

# ###############################################################################################################################

# Extensible freely -joined chain model

# ###############################################################################################################################

class EFJC:

# For more information , see:

# Analytical results of the extensible freely jointed chain model

# Alessandro Fiasconaro and Fernando Falo

# Physica A 2019 , 532 , 121929

# doi.org/10.1016/j.physa.2019.121929

# See also:

# Statistical mechanical constitutive theory of polymer networks:

# The inextricable links between distribution , behavior , and ensemble

# Michael R. Buche and Meredith N. Silberstein

# Physical Review E, 2021 , 102 , 012501

# doi.org/10.1103/PhysRevE.102.012501

# Class initialization

def __init__(self , ** kwargs):

# Default parameter values

N_b = None

kappa = None

k_0 = np.exp(minimum_exponent)

gamma_c = np.inf
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# Retrieve specified parameters

for key , value in kwargs.items ():

if key == ’N_b’:

N_b = value

elif key == ’k_0’:

if value > 0:

k_0 = value

elif key == ’kappa ’:

kappa = value

elif key == ’gamma_c ’:

gamma_c = value

# Check parameter specifications

if N_b is None:

sys.exit(’Error: Need to specify N_b.’)

elif kappa is None:

sys.exit(’Error: Need to specify kappa.’)

# Retain for certain purposes

self.N_b = N_b

self.k_0 = k_0

self.kappa = kappa

self.gamma_c = gamma_c

# Model -specific modifications

self.P_A_tot_eq = 1

self.P_B_tot_eq = 0

self.K_hat = k_0

self.max_k_rev = k_0

self.N_b_H = 0

self.varsigma = 1

self.gamma_TS = self.gamma_c

self.k = lambda gamma_in: k_0 + 0*gamma_in

# Nondimensional mechanical response of the chain

def gamma_fun(eta):

coth = coth_safe(eta)

L = Langevin(eta)

return L + eta/kappa*(1 + (1 - L*coth)/(1 + eta/kappa*coth))

# Compute and store the inverted nondimensional mechanical response to interpolate from

self.gamma_store = np.linspace(0, cutoff_stretch_for_harmonic_eta_EFJC , num_interp)

self.eta_store = np.zeros(self.gamma_store.size)

for i in range(1, len(self.gamma_store)):

self.eta_store[i] = inv_fun_1D(self.gamma_store[i], gamma_fun)

# Function to interpolate from the inverted nondimensional mechamical response of the chain

self.eta_interp_fun = interp_fun_1D(self.gamma_store , self.eta_store)

def eta_fun(gamma_in):

if isinstance(gamma_in , np.ndarray):

eta_out = np.zeros(gamma_in.shape)

harmonic_region = gamma_in > cutoff_stretch_for_harmonic_eta_EFJC

eta_out[harmonic_region] = self.kappa*(gamma_in[harmonic_region] - 1)

eta_out[~harmonic_region] = self.eta_interp_fun(gamma_in[~harmonic_region])

else:

if gamma_in > cutoff_stretch_for_harmonic_eta_EFJC:

eta_out = self.kappa*(gamma_in - 1)

else:

eta_out = self.eta_interp_fun(gamma_in)

return eta_out

# Nondimensional equilibrium distribution function

def P_A_eq_fun(gamma_in , normalization = 1):

# Compute mechanical response

eta = np.array(eta_fun(gamma_in))

eta[eta == 0] = eta_small

# Compute nondimensional Helmholtz free energy per link

coth = coth_safe(eta)

L = Langevin(eta)

vartheta = eta*L + log_over_sinh(eta) - np.log(1 + eta/kappa*coth) \

+ eta ** 2/kappa/2*(1/2 + (1 - L*coth)/(1 + eta/kappa*coth))

# Compute P_A_eq below the yield surface

return (gamma_in <= self.gamma_c)*np.exp(-N_b*vartheta)/normalization

# Nondimensional equilibrium radial distribution function

def g_A_eq_fun(gamma_in , normalization = 1):

return 4*np.pi*gamma_in ** 2*P_A_eq_fun(gamma_in , normalization)

# Normalize the equilibrium distribution

P_A_eq_normalization = quad(g_A_eq_fun , 0, np.inf , full_output = 1)[0]/self.P_A_tot_eq

# Retain each single -chain function

self.eta = eta_fun

self.P_A_eq = lambda gamma_in: P_A_eq_fun(gamma_in , normalization = P_A_eq_normalization)

self.g_A_eq = lambda gamma_in: g_A_eq_fun(gamma_in , normalization = P_A_eq_normalization)
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The Python module file network.py for the specialized implementation is printed below:

# ###############################################################################################################################

# General setup

# ###############################################################################################################################

# Import libraries

import sys

import copy

import numpy as np

from scipy.integrate import romb

from scipy.optimize import root_scalar

# ###############################################################################################################################

# Deformation application class

# ###############################################################################################################################

class deform_network_no_symmetry:

# ###########################################################################################################################

# Initialization

# ###########################################################################################################################

def __init__(self , single_chain_model , J_sw = 1, num_grid_suggestion = 129):

# Inherit single_chain_model

self.scm = single_chain_model

# Volumetric swelling ratio

self.J_sw = J_sw

# Spatial grid octant (F diagonal , i.e. no rotation)

self.num_grid = self.adjust_for_romb(num_grid_suggestion)

self.x = np.linspace(0, self.scm.gamma_TS , self.num_grid)

self.y = self.x

self.z = self.x

self.dx = self.x[1] - self.x[0]

self.dy = self.dx

self.dz = self.dx

self.X, self.Y, self.Z = np.meshgrid(self.x, self.y, self.z)

self.ELL = np.sqrt(self.X*self.X + self.Y*self.Y + self.Z*self.Z)

# Integration element specialized for stress calculation

self.ELEMENT_stress = self.element_stress(self.X, self.Y, self.Z, self.scm)

# Adjust normalization of P_A_eq on the grid

P_A_eq_ELL_non_normalized = np.nan_to_num(self.scm.P_A_eq(self.ELL), nan = 0)

self.P_A_eq_normalization = self.integral_grid_d_3_xi(P_A_eq_ELL_non_normalized)/self.scm.P_A_tot_eq

# ###########################################################################################################################

# Function to compute the results given a deformation and yield function

# ###########################################################################################################################

def compute_results(self , index_t , F, update_yield_function = False):

# Enumerate the relatively -deformed initial distribution

F_inv = np.linalg.inv(F)

P_A_0_rel_t = self.scm.P_A_eq(self.ELL_rel(F_inv)/self.J_sw **(1/3))/self.P_A_eq_normalization/self.J_sw

P_A_0_rel_t[np.isnan(P_A_0_rel_t)] = 0

# Enumerate the yield function

ELL_rel = np.zeros((self.num_grid , self.num_grid , self.num_grid , index_t + 1))

ELL_rel[:, :, :, -1] = self.ELL

for index_index_t in range(index_t):

ELL_rel[:, :, :, index_index_t] = self.ELL_rel(self.F[:, :, index_index_t]*F_inv)

yield_function = np.trapz(ELL_rel > self.scm.gamma_c , x = self.t[:index_t + 1], axis = -1) == 0

# Homogeneous solution for P_A

P_A = P_A_0_rel_t*yield_function

# Total probability that a chain is intact

P_A_tot = self.integral_grid_d_3_xi(P_A)

# Nondimensional stress corresponding to the applied deformation

beta_sigma_over_n_plus_p = np.diag([ \

self.integral_grid_d_3_xi(P_A , element = ’stress ’, component = [1, 1]), \

self.integral_grid_d_3_xi(P_A , element = ’stress ’, component = [2, 2]), \

self.integral_grid_d_3_xi(P_A , element = ’stress ’, component = [3, 3]) \

])

# Return results

return P_A_tot , beta_sigma_over_n_plus_p

# ###########################################################################################################################

# Function to solve for results over the applied deformation history

# ###########################################################################################################################

def solve(self , total_time_in_seconds , F_applied , timestep_in_seconds = None , n_over_beta = None):

# Enumerate time discretization

if timestep_in_seconds is None:

self.timestep_in_seconds = total_time_in_seconds/25
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else:

self.timestep_in_seconds = timestep_in_seconds

num_time = 1 + np.ceil(total_time_in_seconds/self.timestep_in_seconds).astype(int)

self.t = np.linspace(0, total_time_in_seconds , num_time)

# Verify maximum array size is acceptable (memory) before starting

A = np.zeros ((self.num_grid , self.num_grid , self.num_grid , num_time))

del A

# Allocate results

self.F = np.zeros((3, 3, num_time))

self.P_A_tot = np.zeros(num_time)

self.p = np.zeros(num_time)

self.beta_sigma_over_n = np.zeros ((3, 3, num_time))

self.beta_sigma_nominal_over_n = np.zeros((3, 3, num_time))

# Loop through time

for index_t in range(num_time):

# When appling F_11(t)

if F_applied.component(self.t[index_t]) == 11:

F_11 = F_applied(self.t[index_t])

def fun(F_33):

F_22 = 1/(F_11*F_33)

beta_sigma_over_n_plus_p = self.compute_results(index_t , np.diag([F_11 , F_22 , F_33]))[-1]

return beta_sigma_over_n_plus_p[1, 1] - beta_sigma_over_n_plus_p[2, 2]

# When applying F_22(t)

elif F_applied.component(self.t[index_t]) == 22:

F_22 = F_applied(self.t[index_t])

def fun(F_33):

F_11 = 1/(F_22*F_33)

beta_sigma_over_n_plus_p = self.compute_results(index_t , np.diag([F_11 , F_22 , F_33]))[-1]

return beta_sigma_over_n_plus_p[0, 0] - beta_sigma_over_n_plus_p[2, 2]

# Solve for F_33(t) using incompressibility and the traction -free boundary conditions

if index_t == 0:

F_33 = 1

F_33 = root_scalar(fun , x0 = F_33*0.95 , x1 = F_33/0.95).root

# Compute F_22(t) or F_11(t) and thus retrieve F(t)

if F_applied.component(self.t[index_t]) == 11:

F_22 = 1/(F_11*F_33)

elif F_applied.component(self.t[index_t]) == 22:

F_11 = 1/(F_22*F_33)

F = np.diag([F_11 , F_22 , F_33])

# Compute and store the results , update yield function

P_A_tot , beta_sigma_over_n_plus_p = self.compute_results(index_t , F, update_yield_function = True)

self.F[:,:, index_t] = F

self.P_A_tot[index_t] = P_A_tot

self.p[index_t] = beta_sigma_over_n_plus_p[2, 2]

self.beta_sigma_over_n[:, :, index_t] = beta_sigma_over_n_plus_p - self.p[index_t]*np.diag([1, 1, 1])

self.beta_sigma_nominal_over_n[:, :, index_t] = np.linalg.det(self.F[:,:, index_t]) \

*np.linalg.inv(self.F[:,:, index_t]).dot(self.beta_sigma_over_n[:, :, index_t])

# Compute and store other results

if n_over_beta is not None:

self.n_over_beta = n_over_beta

self.sigma = n_over_beta*self.beta_sigma_over_n

self.sigma_nominal = n_over_beta*self.beta_sigma_nominal_over_n

# ###########################################################################################################################

# Function to adjust discretization for Romberg integration

# ###########################################################################################################################

def adjust_for_romb(self , num_discretization , decrease = False):

if ((np.log(num_discretization - 1)/np.log(2)).is_integer ()):

return int(round(num_discretization))

else:

n = 0

dos_check = 3

while dos_check >= 2:

n += 1

dos_check = (num_discretization - 1) ** (1/n)

if decrease is True and dos_check < 2:

return int(1 + 2** (n - 1))

else:

return int(1 + 2** n)

# ###########################################################################################################################

# Function for integration over the spatial grid

# ###########################################################################################################################

def integral_grid_d_3_xi(self , FUN , element = 1, component = None):

if element == ’stress ’:

element = self.ELEMENT_stress[:, :, :, component[0] - 1, component[1] - 1]

if FUN.ndim == 3:

return 8*romb(romb(romb(FUN*element , \

dx = self.dx, axis = 0), dx = self.dy , axis = 0), dx = self.dz , axis = 0)

elif FUN.ndim == 4:

return 8*romb(romb(romb(FUN*element[:,:,:,None], \
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dx = self.dx, axis = 0), dx = self.dy , axis = 0), dx = self.dz , axis = 0)

elif FUN.ndim == 5:

return 8*romb(romb(romb(FUN*element[:,:,:,None ,None], \

dx = self.dx, axis = 0), dx = self.dy , axis = 0), dx = self.dz , axis = 0)

# ###########################################################################################################################

# Function for integration element specialized for stress calculation

# ###########################################################################################################################

def element_stress(self , x, y, z, single_chain_model):

ell = np.sqrt(x*x + y*y + z*z)

eta = np.nan_to_num(single_chain_model.eta(ell), nan = 0)

if isinstance(z, np.ndarray):

eta_over_ell = np.zeros(z.shape)

eta_over_ell[ell != 0] = eta[ell != 0]/ell[ell != 0]

else:

if ell == 0:

eta_over_ell = 0

else:

eta_over_ell = eta/ell

C = (single_chain_model.N_b + single_chain_model.varsigma*single_chain_model.N_b_H)/self.J_sw

element_out = np.zeros ((ell.shape[0], ell.shape[1], ell.shape[2], 3, 3))

element_out[:, :, :, 0, 0] = C*eta_over_ell*x*x

element_out[:, :, :, 0, 1] = C*eta_over_ell*x*y

element_out[:, :, :, 0, 2] = C*eta_over_ell*x*z

element_out[:, :, :, 1, 0] = C*eta_over_ell*y*x

element_out[:, :, :, 1, 1] = C*eta_over_ell*y*y

element_out[:, :, :, 1, 2] = C*eta_over_ell*y*z

element_out[:, :, :, 2, 0] = C*eta_over_ell*z*x

element_out[:, :, :, 2, 1] = C*eta_over_ell*z*y

element_out[:, :, :, 2, 2] = C*eta_over_ell*z*z

return element_out

# ###########################################################################################################################

# Function to return relatively -deformed coordinates

# ###########################################################################################################################

def ELL_rel(self , F_rel):

X_rel = F_rel[0, 0]*self.X + F_rel[0, 1]*self.Y + F_rel[0, 2]*self.Z

Y_rel = F_rel[1, 0]*self.X + F_rel[1, 1]*self.Y + F_rel[1, 2]*self.Z

Z_rel = F_rel[2, 0]*self.X + F_rel[2, 1]*self.Y + F_rel[2, 2]*self.Z

return np.sqrt(X_rel*X_rel + Y_rel*Y_rel + Z_rel*Z_rel)
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[38] M. Podgórski, S. Mavila, S. Huang, N. Spurgin, J. Sinha, and C. N. Bowman. Thiol–
Anhydride Dynamic Reversible Networks. Angew. Chem. Int. Ed. 59, 24 (2020).

[39] L. Carlsson, S. Rose, D. Hourdet, and A. Marcellan. Nano-hybrid self-crosslinked PDMA/sil-
ica hydrogels. Soft Matter 6, 15 (2010).

[40] K. J. Henderson, T. C. Zhou, K. J. Otim, and K. R. Shull. Ionically cross-linked triblock
copolymer hydrogels with high strength. Macromolecules 43, 14 (2010).

[41] W.-C. Lin, W. Fan, A. Marcellan, D. Hourdet, and C. Creton. Large strain and fracture prop-
erties of poly (dimethylacrylamide)/silica hybrid hydrogels. Macromolecules 43, 5 (2010).

[42] D. C. Tuncaboylu, M. Sari, W. Oppermann, and O. Okay. Tough and self-healing hydrogels
formed via hydrophobic interactions. Macromolecules 44, 12 (2011).

[43] M. A. Haque, T. Kurokawa, G. Kamita, and J. P. Gong. Lamellar bilayers as reversible
sacrificial bonds to toughen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack
blunting. Macromolecules 44, 22 (2011).

[44] T. L. Sun, T. Kurokawa, S. Kuroda, A. B. Ihsan, T. Akasaki, K. Sato, M. A. Haque, T.
Nakajima, and J. P. Gong. Physical hydrogels composed of polyampholytes demonstrate
high toughness and viscoelasticity. Nat. Mater. 12, 10 (2013).

https://dx.doi.org/10.1021/acs.macromol.9b02756
https://dx.doi.org/10.1021/acs.macromol.9b02756
https://dx.doi.org/10.1021/acs.macromol.9b02756
https://dx.doi.org/10.1126/science.1212648
https://dx.doi.org/10.1126/science.1212648
https://dx.doi.org/10.1126/science.1212648
https://dx.doi.org/10.1021/mz300239f
https://dx.doi.org/10.1021/mz300239f
https://dx.doi.org/10.1021/mz300239f
https://dx.doi.org/10.1002/adfm.201404553
https://dx.doi.org/10.1002/adfm.201404553
https://dx.doi.org/10.1002/adfm.201404553
https://dx.doi.org/10.1126/science.aah5281
https://dx.doi.org/10.1126/science.aah5281
https://dx.doi.org/10.1126/science.aah5281
https://dx.doi.org/10.1021/ma902596s
https://dx.doi.org/10.1021/ma902596s
https://dx.doi.org/10.1021/ma902596s
https://dx.doi.org/10.1126/science.1065879
https://dx.doi.org/10.1126/science.1065879
https://dx.doi.org/10.1126/science.1065879
https://dx.doi.org/10.1039/C3CS60046G
https://dx.doi.org/10.1039/C3CS60046G
https://dx.doi.org/10.1039/C3CS60046G
https://dx.doi.org/10.1002/adma.201502902
https://dx.doi.org/10.1002/adma.201502902
https://dx.doi.org/10.1002/adma.201502902
https://dx.doi.org/10.1039/C9SC05381F
https://dx.doi.org/10.1039/C9SC05381F
https://dx.doi.org/10.1039/C9SC05381F
https://dx.doi.org/10.1002/anie.202001388
https://dx.doi.org/10.1002/anie.202001388
https://dx.doi.org/10.1002/anie.202001388
https://dx.doi.org/10.1039/C0SM00009D
https://dx.doi.org/10.1039/C0SM00009D
https://dx.doi.org/10.1039/C0SM00009D
https://dx.doi.org/10.1021/ma100963m
https://dx.doi.org/10.1021/ma100963m
https://dx.doi.org/10.1021/ma100963m
https://dx.doi.org/10.1021/ma901937r
https://dx.doi.org/10.1021/ma901937r
https://dx.doi.org/10.1021/ma901937r
https://dx.doi.org/10.1021/ma200579v
https://dx.doi.org/10.1021/ma200579v
https://dx.doi.org/10.1021/ma200579v
https://dx.doi.org/10.1021/ma201653t
https://dx.doi.org/10.1021/ma201653t
https://dx.doi.org/10.1021/ma201653t
https://dx.doi.org/10.1038/nmat3713
https://dx.doi.org/10.1038/nmat3713
https://dx.doi.org/10.1038/nmat3713


180 References

[45] T. Narita, K. Mayumi, G. Ducouret, and P. Hébraud. Viscoelastic properties of poly (vinyl
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