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Abstract

➢ Mechanisms of ductile fracture are understood, but constitutive modeling is still difficult.
➢ Mechanisms occur at material length scales, but engineering scale analyses are required.

➢ Here, the focus is void growth in metals.

➢ Clever mechanicians have developed quality analytic damage laws in the past.
➢ Though effective and efficient, these are limited by necessary assumptions.

➢ Contemporary computational power enables us to advance.
➢ Perform direct numerical simulation (DNS) of explicit microstructural features.

➢ Generate large sets of training data to drive machine learning.

➢ Obtain a model that captures more of the relevant fine-scale physics.

➢ Genetic programming with symbolic regression (GPSR) is an attractive option.
➢ An analytic damage evolution law: interpretable, simple to integrate in existing workflows.

➢ A data-driven, analytic damage model without making limiting assumptions.
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Two existing models for porosity kinetics

➢ Gurson model of porous plasticity
➢ Yield surface formulation1

➢ Possible to cast as damage formulation2

➢ Focus of our collaborators at Utah and NASA3

➢ Cocks-Ashby model of creep fracture
➢ Damage formulation4

➢ Growth/diffusion of pores on grain boundaries

➢ Some assumptions of either model (and others)
➢ Perfect plasticity or power-law creep

➢ Self-similar growth of spherical pores

➢ No interaction of pores

➢ Isotropic homogeneous matrix

➢ Hard to derive analytic models without assumptions,
but still possible to obtain them computationally.
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Genetic programming with symbolic regression (GPSR)

➢ Genetic programming

➢ Evolve models using (data) fitness

➢ Symbolic regression

➢ Combine functions/operations/etc.

➢ Implicit or explicit

➢ Verify models using control data3

➢ (Verify the GPSR approach)

➢ Discover models using new data
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Mutation

𝑦 = 𝑥2 − 2𝑥𝑦 = 𝑥2 − (𝑥 + 2)

𝑦 = 𝑥2 − 3

𝑦 = 𝑥 + 𝑥

[3]   Bomarito, G.F., Townsend, T.S., Stewart, K.M., Esham, K.V., Emery, J.M., Holchhalter, J.D. Development of interpretable, data-driven plasticity models with symbolic regression. Comp. & Struct. 252, 106557 (2021).
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Direct numerical simulation (DNS)

➢ Additively-manufactured 316L stainless steel

➢ Porosity data known5,6 (0.09% porosity; sizes)

➢ Geometry/mesh using Cubit7

➢ Poisson point process for pore placement

➢ Nominally 10 pores per cube

➢ Tractable, convergent meshes

➢ FE calculations using Sierra8

➢ Randomly sampled deformations9

➢ 50 meshes x 50 deformations

➢ Von Mises yield, Voce hardening5
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Data-driven analytic model via GPSR

➢ GPSR using Bingo
➢ Open-source software available on GitHub

➢ Explicit training data:
➢ 𝜙 pore volume fraction (damage)

➢ ሶ𝜖𝑝 equivalent plastic strain rate

➢ T triaxiality

➢ 𝐿 Lode factor

➢ Obtain Pareto front of models
➢ Highest-fitness individuals at each complexity

➢ Often best to choose near an “elbow”
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ሶ𝜙 = 𝑓 𝜙, ሶ𝜖𝑝, 𝑇, 𝐿

𝜙 ∈ (0,1)

𝜎 = 1 − 𝜙 ෤𝜎



Results and comparison8
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Raw data Bingo model

Pareto front
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Raw data (solid)

Bingo model (dashed)
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Conclusion

➢ GPSR was used to obtain an analytic continuum damage model.

➢ Training data for GPSR was provided by DNS.

➢ This model was compared with the existing Cocks-Ashby damage model.

➢ This model was used to predict fracture of an AM specimen.

➢ Many considerations going forward:

➢ Fitness for (integrated) evolution equations.

➢ Model uncertainty quantification10 or spatially-varying damage models.

➢ Refinement of microstructural features.
➢ Pore nucleation/coalescence, pore/particle shape, grain morphologies, and related microstructural statistics.

➢ Optimized generation of training data.
➢ Cognizant of paths through state-variable space, not just applied deformations.

➢ Size effects, extreme-value statistics, etc.
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