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Abstract

Mechanisms of ductile fracture are understood, but constitutive modeling is still difficult.
Mechanisms occur at material length scales, but engineering scale analyses are required.
Here, the focus is void growth in metals.

Clever mechanicians have developed quality analytic damage laws in the past.
Though effective and efficient, these are limited by necessary assumptions.

Contemporary computational power enables us to advance.
Perform direct numerical simulation (DNS) of explicit microstructural features.
Generate large sets of training data to drive machine learning.
Obtain a model that captures more of the relevant fine-scale physics.

Genetic programming with symbolic regression (GPSR) is an attractive option.
An analytic damage evolution law: interpretable, simple to integrate in existing workflows.
A data-driven, analytic damage model without making limiting assumptions.
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Two existing models for porosity kinetics

Gurson model of porous plasticity o = (&> + 2¢ cosh (?”ﬁ) — 1 — ¢*
Yield surface formulation’ Ty 20y
Possible to cast as damage formulation?
Focus of our collaborators at Utah and NASA3
. 3., 1= (1—¢)""! - 2(2n — 1) oy,
Cocks-Ashby model of creep fracture =43¢ T [ m + 1 ge]
Damage formulation*
Growth/diffusion of pores on grain boundaries o
Prtitety g
|
Some assumptions of either model (and others) %
Perfect plasticity or power-law creep ) S ‘_‘
Self-similar growth of spherical pores e — %)
No interaction of pores 7 \ T — "
Isotropic homogeneous matrix AT
] .L ==
Hard to derive analytic models without assumptions, _ o qu_t & _ “ _
but still possible to obtain them computationally. B e e

[11 Gurson, A.L. Continuum theory of ductile rupture by void nucleation and growth.

[2] Moore, J.A., Frasca, A. A comparison of Gurson and Cocks-Ashby porosity kinetics and degradation functions.

[31 Bomarito, G.F., Townsend, T.S., Stewart, K.M., Esham, K.V., Emery, J.M., Holchhalter, J.D. Development of interpretable, data-driven plasticity models with symbolic regression.
[4] Cocks, A.C.F., Ashby, M.F. On creep fracture by void growth.


https://doi.org/10.1115/1.3443401
https://doi.org/10.1007/s10704-021-00539-6
https://doi.org/10.1016/j.compstruc.2021.106557
https://doi.org/10.1016/0079-6425(82)90001-9
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Genetic programming with symbolic regression (GPSR)

Genetic programming

. , y=x%—(x+2) y = x%—2x
Evolve models using (data) fitness
Mutation
Symbolic regression <
Combine functions/operations/etc. X[ [X][X] (]2 X X X
Implicit or explicit y = x%—3
y=x+x o§
Verify models using control data3 N /@)\ &
(Verify the GPSR approach) 3 G
X X X X

Discover models using new data

[31 Bomarito, G.F., Townsend, T.S., Stewart, K.M., Esham, K.V., Emery, J.M., Holchhalter, J.D. Development of interpretable, data-driven plasticity models with symbolic regression.
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https://doi.org/10.1016/j.compstruc.2021.106557

s | Direct numerical simulation (DNS)

Additively-manufactured 316L stainless steel
Porosity data known>® (0.09% porosity; sizes)

Probability density

Geometry/mesh using Cubit’
Poisson point process for pore placement 00 = g = = 160
Nominally 10 pores per cube Pore diameter (microns)

Tractable, convergent meshes

FE calculations using Sierra®
Randomly sampled deformations®

50 meshes x 50 deformations
Von Mises yield, Voce hardening>

[5]1 Johnson, K.L., et al. Predicting the reliability of an additively-manufactured metal part for the third Sandia fracture challenge by accounting for random material defects.
[6] Kramer, S.L.B., et al. The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal.

[7]1 Cubit Geometry and Mesh Generation Toolkit, Sandia National Laboratories. U.S. Department of Energy Office of Scientific and Technical Information ( ).

[8] Sierra Solid Mechanics, Sandia National Laboratories. U.S. Department of Energy Office of Scientific and Technical Information ( ).

[9] Fuhg,Jan N., Bouklas, Nikolaos. On physics-informed data-driven isotropic and anisotropic constitutive models through probabilistic machine learning and (...).


https://doi.org/10.1007/s10704-019-00368-8
https://doi.org/10.1007/s10704-019-00361-1
https://www.osti.gov/
https://www.osti.gov/
https://doi.org/10.1016/j.cma.2022.114915
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github.com/nasa/bingo

GPSR using Bingo
Open-source software available on GitHub

Explicit training data:
¢ pore volume fraction (damage)

: 2
eP equivalent plastic strain rate = - €i€tj
T triaxiality = V2 SO O ¢ = f(¢’ Ep’ T’ L)
3 /(01— 02)? + (02 — 03)2 + (03 — 01)?
_ 20‘2 — 01 — 03
L  Lode factor = p——— ¢ = (O,]_)
Obtain Pareto front of models _
Highest-fitness individuals at each complexity 0O — (1 — ¢)0’

Often best to choose near an “elbow”
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—1266.56465709685¢T /(¢ — T') + 1.8281231411269¢°T* cosh(T) cosh(2T) /(¢ — T)
— 0.000204082955151593T'% cosh(2T') /(¢ — T') — 1.8281231411269¢°T cosh(T')? cosh(2T) /(¢ — T)

2(2n — 1) op, ] + 0.000204082955151593T cosh(T’) cosh(2T") /(¢ — T') + 0.000743321346813624T cosh(2T") /(¢ — T)

- (\n+1
3 _pl—(l—.)”
2n+1 o,

b=/

2" T 1-ay

+ 3000.4565365942T°/ (¢ — T') 4 0.0230704434503944 cosh(T) + 1734.22244438618
— 22209833871536.8/(—104581162220851.0 cosh(2T') — 1.09956329870896¢'% )
— 0.000743321346813624 cosh(T') cosh(2T) /(¢ — T') — 1733.74640038185/(¢p — T)

sinh [

—— Bingo
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Raw data Bingo model ]

Pareto front qb _ \/gép 1 —((1 _ Q;)nJrl o [2(2?1 —1) J;L]
2 1— o))" 2n+1 o,

—0.331601702572¢° (¢2)*T — 2.8e °¢° ¢PT +
230472.485470718¢° éPT'/(—peP — 115874.234587) +
0.32691013712¢° (¢7)*T + 2.8 °¢*ePT? + 2.8¢ °¢p*ePTL +

2.000946907344¢% ¢PT — 0.331601702572¢% P —
67693.276903898¢° ¢ /(—pe? — 115874.234587) +
2.8¢7° ¢* sinh(2¢? + 2 cosh(¢)) — 0.485153643688¢" - 0.491124069968
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Raw data (solid)

Bingo model (dashed)
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[5]1 Johnson, K.L., et al. Predicting the reliability of an additively-manufactured metal part for the third Sandia fracture challenge by accounting for random material defects.

[6] Kramer, S.L.B., et al. The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal.


https://doi.org/10.1007/s10704-019-00368-8
https://doi.org/10.1007/s10704-019-00361-1
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[5]1 Johnson, K.L., et al. Predicting the reliability of an additively-manufactured metal part for the third Sandia fracture challenge by accounting for random material defects.
[6] Kramer, S.L.B., et al. The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal.
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12 | Conclusion

GPSR was used to obtain an analytic continuum damage model.

Training data for GPSR was provided by DNS.
This model was compared with the existing Cocks-Ashby damage model.
This model was used to predict fracture of an AM specimen.

Many considerations going forward:

Fitness for (integrated) evolution equations.
Model uncertainty quantification'® or spatially-varying damage models.

Refinement of microstructural features.
Pore nucleation/coalescence, pore/particle shape, grain morphologies, and related microstructural statistics.

Optimized generation of training data.
Cognizant of paths through state-variable space, not just applied deformations.

Size effects, extreme-value statistics, etc.

[10] Bomarito, G.F., Leser, P.E., Strauss, N.C.M., Garbrecht, K.M., Holchhalter ).D. Automated learning of interpretable models with quantified uncertainty.
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