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Modeling single-molecule stretching experiments using statistical thermodynamics
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Single-molecule stretching experiments are widely utilized within the fields of physics and chemistry to
characterize the mechanics of individual bonds or molecules, as well as chemical reactions. Analytic relations
describing these experiments are valuable, and these relations can be obtained through the statistical thermody-
namics of idealized model systems representing the experiments. Since the specific thermodynamic ensembles
manifested by the experiments affect the outcome, primarily for small molecules, the stretching device must be
included in the idealized model system. Though the model for the stretched molecule might be exactly solvable,
including the device in the model often prevents analytic solutions. In the limit of large or small device stiffness,
the isometric or isotensional ensembles can provide effective approximations, but the device effects are missing.
Here a dual set of asymptotically correct statistical thermodynamic theories are applied to develop accurate
approximations for the full model system that includes both the molecule and the device. The asymptotic theories
are first demonstrated to be accurate using the freely jointed chain model and then using molecular dynamics
calculations of a single polyethylene chain.
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I. INTRODUCTION

The application of mechanical forces at the molecular
level is an effective method of understanding molecular
mechanisms, as well as the underlying chemical physics.
Single-molecule stretching experiments examining these
mechanisms have been made possible using devices like
atomic force microscopes [1–8] or optical tweezers [9–17].
The complex folding mechanisms and related biomolecular
functions of proteins, nucleic acids, and other biologi-
cal macromolecules have been studied via single-molecule
stretching experiments with devices like these [18–24]. Uti-
lizing mechanochemistry [25–27], reactive molecules known
as mechanophores are often incorporated into polymer mate-
rials, in order to activate desired chemical functionality when
the material is deformed [28–33]. Similar devices used in
single-molecule stretching experiments for biological systems
are also used to characterize mechanophores in order to as-
sist material design [34–43]. Since mathematical modeling
is commonly used to support all of these experiments, it
is clearly a worthwhile endeavor to improve the associated
models.

Many of the existing models that correspond to single-
molecule stretching experiments utilize the principles of
statistical thermodynamics, since thermal effects are often
important if not dominant (especially for polymers). Sim-
ulations techniques such as density functional theory and
molecular dynamics can incorporate or approximate thermal
effects in modeling molecular stretching [44–47], but this is
typically expensive, and further does not produce interpretable
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relations for practical modeling goals. Analytic relations for
the experiments are valuable since they enable rapid pre-
diction and further understanding. To that end, a common
modeling approach involves constructing an idealized model
system that represents the experiment, applying the prin-
ciples of statistical thermodynamics (i.e., formulating the
partition function), and analytically solving the system for
the desired relations. Since an experiment creates a specific
thermodynamic ensemble for the system (and since differ-
ent thermodynamic ensembles generally result in different
outcomes, especially for things like short polymer chains
[48–54]) the stretching device should be included in the
model. This is done by including a device potential in the
model system Hamiltonian, and in limited cases the result-
ing partition functions can be integrated analytically [55–57].
Unfortunately, models in general—even models which are
analytically solvable before including the device—become
unsolvable once including the device within the model. If
the device stiffness is sufficiently large or small, it can be
accurate to approximate the model system using the isometric
or isotensional thermodynamic ensembles [56–58], but the
effects of the device are completely lost.

In order to obtain accurate analytic relations for arbi-
trary molecules under the effects of the device, a dual set
of asymptotically correct statistical thermodynamic theories
are developed here starting from the general theory. The
first theory builds approximations for stiff devices using the
asymptotic theory for systems with steep potentials [59–63].
The second theory builds approximations for compliant de-
vices using Zwanzig’s theory for systems with weak potentials
[64,65]. The accuracy of both theories is verified by applying
them to the freely jointed chain model and molecular dy-
namics calculations of a single polyethylene chain. Overall,
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this work provides a rigorous and systematic approach of
including a device when modeling single-molecule stretching
experiments.

II. GENERAL THEORY

A modified rendition of the canonical ensemble [65] is
utilized in order to model the finite stiffness of the device
stretching the molecule. One end of the molecule is fixed at the
origin, while the other end is subjected to a harmonic potential
of stiffness W located at ξ. The temperature T is fixed and pa-
rameterized by β = 1/kT , where k is the Boltzmann constant.
Only configurational degrees of freedom are considered with-
out loss of generality. The partition function for the system
Q can be calculated by integrating the partition function for
the molecule at a fixed end-to-end vector (the isometric en-
semble) over all end-to-end vectors ξ′, weighted by the Boltz-
mann factor resulting from the device potential centered at ξ.
This modified canonical ensemble partition function Q is then

Q(ξ) =
∫∫∫

Q0(ξ′) e− 1
2 βW (ξ−ξ′)2

d3ξ′, (1)

where Q0(ξ′) is the partition function of the system in the
isometric ensemble, where the end-to-end vector ξ′ of the
molecule would be fixed. The expected force f is an ensemble
average can then be calculated from Q as

f (ξ) = −1

β

∂ ln Q(ξ)

∂ξ
. (2)

To similarly calculate the expected end-to-end vector of the
molecule, it becomes convenient to define another partition
function Z ≡ eβW ξ 2/2Q and a force effectively applied by the
potential f ≡ W ξ. This results in

Z (f ) =
∫∫∫

Q0(ξ′) eβf ·ξ′
e− 1

2 βW (ξ′)2

d3ξ′, (3)

which then allows the expected end-to-end vector ξ, another
ensemble average, to be calculated from Z as

ξ(f ) = 1

β

∂ ln Z (f )

∂f
. (4)

In general, Eqs. (2) and (4) will produce different results.

III. ASYMPTOTIC THEORY

A duel set of asymptotically correct statistical thermody-
namic theories are now applied to the general theory. Namely,
the asymptotic theory of Buche [59] is used to approximate
Eqs. (1) and (2) in the limit of a strong potential, and the
perturbation theory of Zwanzig [64] is used to approximate
Eqs. (3) and (4) in the limit of a weak potential. Either
approach builds upon a reference system (the isometric and
isotensional ensembles, respectively) and includes small cor-
rections. Derivatives of functions with respect to the argument
are denoted using apostrophes, and vector arguments are re-
placed by scalars without loss of generality.

A. Strong potential

As βW becomes sufficiently large, the asymptotic the-
ory of Buche [59] shows that Eq. (1) can be asymptotically

approximated as

Q(ξ ) ∼
(

2π

βW

)3/2

Q0(ξ )

[
1 + 1

2βW

Q′′
0 (ξ )

Q0(ξ )

]
, (5)

where Q0(ξ ) is the partition function of the reference system,
i.e., the system in the isometric ensemble. If βW is indeed
large, one can further approximate

ln

[
1 + 1

2βW

Q′′
0 (ξ )

Q0(ξ )

]
∼ 1

2βW

Q′′
0 (ξ )

Q0(ξ )
. (6)

Using Q′′
0/Q0 = (β f0)2 − β f ′

0 and applying Eq. (2) then
yields an asymptotic relation for the expected force f as a
function of the applied potential distance ξ ,

f (ξ ) ∼ f0(ξ ) − 1

βW

[
β f0(ξ ) f ′

0(ξ ) − f ′′
0 (ξ )

2

]
, (7)

valid as βW becomes sufficiently large, where f0(ξ ) is the
expected force f0 as a function of the applied end-to-end
length ξ for the system in the isometric ensemble.

B. Weak potential

As βW becomes sufficiently small, the perturbation theory
of Zwanzig [64] shows that Eq. (3), in this case, can be
asymptotically approximated as

Z ( f ) ∼ Z0( f )

[
1 − W

2β

Z ′′
0 ( f )

Z0( f )

]
, (8)

where Z0( f ) is the partition function of the reference sys-
tem, i.e., the system in the isotensional ensemble. Note that
Z ′′

0 /Z0 = (βξ0)2 has been used in obtaining Eq. (8), which
with the assumption that βW is small also permits

− ln

[
1 − βW

2
ξ 2

0 ( f )

]
∼ βW

2
ξ 2

0 ( f ). (9)

Applying Eq. (4) then yields an asymptotic relation for the
expected end-to-end length ξ as a function of the effective
force applied by the potential f ,

ξ ( f ) ∼ ξ0( f )[1 − W ξ ′
0( f )], (10)

valid as βW becomes sufficiently small, where ξ0( f ) is the
expected end-to-end length ξ0 as a function of the applied
force f for the system in the isotensional ensemble.

IV. APPLICATION: FJC MODEL

The dual set of asymptotic relations developed in Sec. III
are now demonstrated using the freely jointed chain (FJC)
model. The freely jointed chain model consists of Nb rigid
links of length �b, which can pass through one another and
rotate about the connecting hinges without penalty [66–68].
The case of an increasingly strong applied potential is con-
sidered first, followed by the case of an increasingly weak
applied potential. In either case, the relevant asymptotic re-
lation performs increasingly well. All numerical calculations
in this section were completed using the Polymers Modeling
Library [69].

The full system is nondimensionalized using the nondi-
mensional force η ≡ β f �b, the nondimensional potential
distance or end-to-end length per link γ ≡ ξ/Nb�b, and

064503-2



MODELING SINGLE-MOLECULE STRETCHING … PHYSICAL REVIEW E 108, 064503 (2023)

the nondimensional potential stiffness 	 ≡ βW �2
b. Applying

these nondimensional variables to Eqs. (1) and (2), the exact
relation for the expected nondimensional force η as a function
of the applied nondimensional potential distance γ is given by

η(γ ) = −1

Nb

∂

∂γ
ln

∫∫∫
Q0(γ ′) e− 	

2 N2
b (γ−γ ′ )2

d3γ ′. (11)

Similarly applying the same nondimensional variables to
Eqs. (3) and (4), the exact relations for the expected nondi-
mensional end-to-end length per link γ as a function of the
effective applied nondimensional force η is given by

γ (η) = 1

Nb

∂

∂η
ln

∫∫∫
Q0(γ ′) eNbγ

′ ·
(
η− Nb	

2 γ ′
)
d3γ ′. (12)

The integrals in Eqs. (11) and (12) can each be reduced to one
dimension, subsequently integrated numerically.

A. Strong potential

For a large nondimensional potential stiffness 	 � 1, the
expected nondimensional force η as a function of the applied
nondimensional potential distance γ given by Eq. (11) can
instead be asymptotically approximated to ord(	−1) using
Eq. (7) as

η(γ ) ∼ η0(γ ) − 1

Nb	

[
η0(γ )η′

0(γ ) − η′′
0 (γ )

2Nb

]
, (13)

where η0 is the expected nondimensional force as a function
of an applied nondimensional end-to-end length per link γ for
a freely jointed chain in the isometric ensemble,

η0(γ ) = 1

Nbγ
+

(
1

2
− 1

Nb

)
h(γ , 3)

h(γ , 2)
, (14)

which has been analytically calculated here using the exact
equilibrium distribution Peq given by Treloar [66] and the
pertinent thermodynamic relation [54]:

Peq(γ ) = (Nb�b)3NNb
b

8π (Nb − 2)!

h(γ , 2)

γ
, η(γ ) = 1

Nb

∂

∂γ
ln Peq(γ ).

(15)

The auxiliary functions h(γ , n), where the summands are
given by smax(γ ) ≡ �(1 − γ /2)Nb�, are defined as

h(γ , n) ≡
smax(γ )∑

s=0

(−1)s

(
Nb

s

)(
1 − γ

2
− s

Nb

)Nb−n

. (16)

The exact relation in Eq. (11) is plotted with the asymptotic
relation in Eq. (13) in Fig. 1. As 	 increases, the asymptotic
approach does increasingly well in approximating the full
system, but tends to fail as γ → 1. This eventual failure is
because the freely jointed chain model experiences increas-
ingly large forces as γ → 1 due to its inextensibilty [roughly,
η ∼ (1 − γ )−1 as γ → 1]. Once the nondimensional force
η starts to near the order of the nondimensional potential
stiffness 	 , the end of the chain will be necessarily be biased
away from the center of the potential well. This in turn causes
the asymptotic approach, which in this case is based on the
isometric ensemble, to become inaccurate. It is then appar-
ent that 	 � η and 	 � 1 are both requirements for the
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� → ∞

FIG. 1. (FJC model) Expected nondimensional force η as a func-
tion of the applied nondimensional potential distance γ , calculated
using the asymptotic (dotted) and exact (solid) approaches, for vary-
ing nondimensional potential stiffness 	 .

asymptotic approach to succeed in accurately approximating
the full system. Therefore, experiments that attempt to apply
isometric conditions will achieve higher accuracy at larger
extensions with molecules that are less stiff.

B. Weak potential

For a small nondimensional potential stiffness 	 	 1, the
expected nondimensional end-to-end length per link γ as a
function of the effective applied nondimensional force η given
by Eq. (12) can instead be asymptotically approximated to
ord(	 ) using Eq. (10) as

γ (η) ∼ γ0(η)[1 − Nb	γ ′
0(η)], (17)

where γ0 is the expected nondimensional end-to-end length
per link as a function of an applied nondimensional force η

for a freely jointed chain in the isotensional ensemble, given
exactly by the Langevin function [68]

γ0(η) = coth(η) − 1
η
. (18)

The exact relation in Eq. (12) is plotted with the asymp-
totic relation in Eq. (17) in Fig. 2. As 	 decreases and/or
the nondimensional force η increases (the applied nondimen-
sional potential distance η/Nb	 increases), the asymptotic
approach does increasingly well in approximating the full
system. Notably, the asymptotic approach appears to succeed
for sufficiently distant potentials for any value of 	 . This
is an artifact resulting from the inextensibility of the freely
jointed chain model, where even a stiff potential (	 � 1) that
is distant (η/Nb	 � 1) will not stretch the chain past γ = 1.
For more general molecular models, the effective molecular
stiffness would compete with the potential stiffness, such that
the potential would need to be weak (	 	 1) in addition to
distant (η/Nb	 � 1) in order for the asymptotic approach to
become accurate. Otherwise, the distant potential would be
strong enough to stretch the molecule to lengths that compare
with the potential distance, which would cause appreciable
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FIG. 2. (FJC model) Rescaled effective applied nondimensional
force η/Nb	 as a function of the expected nondimensional end-
to-end length per link γ , calculated using the asymptotic (dotted)
and exact (solid) approaches, for varying nondimensional potential
stiffness 	 .

fluctuations in the resulting force. Therefore, experiments that
attempt to apply isotensional conditions will achieve higher
accuracy at larger forces with molecules that are more stiff.

While the approximation for strong potentials in Eq. (13)
improves as the molecular system becomes large (Nb in-
creases), the approximation for weak potentials in Eq. (17)
instead worsens. This contrasts with common intuition
concerning approximations, thermodynamic ensembles, and
system size, especially when stretching polymer chains
[48,50,51,54,65]. This reversal is simply because the ap-
proximation for weak potentials, based on the isotensional
ensemble, relies on the total length scale of the molecule
(Nb�b in this case) being small compared to the distance
of the potential. The resulting disparity in length scales is
what causes the fluctuations in end-to-end distance to become
negligible compared to the shape of the potential, and the
resulting effective force from the potential to become approxi-
mately constant. Therefore, experiments that attempt to apply
isotensional conditions will achieve higher accuracy at larger
distances with molecules that are smaller in effective length.

V. APPLICATION: POLYETHYLENE

The dual set of asymptotic relations developed in Sec. III
are now demonstrated using a molecular dynamics (MD)
calculation of a single short polyethylene chain. The model
system consisted of a saturated chain of 64 carbon atoms
(see Fig. 3) in a cube of volume 512 nm2 at temperature
100 K (NVT) with a damping parameter of 1.0 fs for the
thermostat. Keeping one of the two terminal carbon atoms
fixed, the end-to-end length ξ was calculated at each time step
(0.1 fs, due to the possibility of fast proton dynamics) over
the total time of 300 ns (totaling 3 billion samples). These
calculations were completed using LAMMPS [70] with the
reactive bond-order based force-field ReaxFF parametrized

FIG. 3. Short polyethylene chain after relaxation, where carbon
atoms are gray and hydrogen atoms are white.

(see Supplemental Material [71]) for hydrocarbons [72],
where it was verified that no reactions occurred.

A. Strong potential

The equilibrium radial distribution function geq
0 was gen-

erated from the MD calculations using a smoothed histogram
of 1000 equal-length bins between the minimum (6.2 Å) and
maximum (11.3 Å) observed values of the end-to-end length
ξ . The equilibrium distribution Peq

0 = (2πξ 2)−1geq
0 ∝ Q0 was

then used to obtain the expected mechanical response f (ξ )
through Eqs. (1) and (2). The asymptotic approximation for
f (ξ ) was calculated using Eq. (7). The results are shown in
Fig. 4 for a potential stiffness of W = 40 kJ/(mol Å2), which
if �b = 1.5 Å is chosen (approximate carbon-carbon bond
length), then W corresponds to 	 ≈ 100. The results in Fig. 4
show the asymptotic approach provides an accurate approxi-
mation until the forces increase rapidly and are dominated by
the potential stiffness. Figure 4 also shows that the asymp-
totic approach is applicable to molecules under compression.

7 8 9 10 11

− 100

0

100

ξ [Å]

f
[p
N
]

W = 40 kJ/(mol Å2)

W → ∞

FIG. 4. (Polyethylene) Expected force f as a function of the
applied potential distance ξ , calculated using the asymptotic (dotted)
and molecular dynamics (solid) approaches.
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FIG. 5. (Polyethylene) Effective force f as a function of the ex-
pected end-to-end length ξ , calculated using the asymptotic (dotted)
and molecular dynamics (solid) approaches.

Unlike the links in FJC model, the polyethylene monomers in
this MD calculation interact and cannot overlap. This causes
complicated conformational changes as the molecule is ex-
tended, as evidenced in Fig. 4 by the nonmonotonic behavior
of the force as a function of the applied extension.

B. Weak potential

The expected end-to-end length as a function of the ef-
fective applied force ξ ( f ), where the effective force f is
defined as the potential stiffness W multiplying the potential
distance, was calculated using Q = e−β f 2/2W Z from Sec. V A
and Eqs. (3) and (4). The asymptotic approximation for ξ ( f )
was calculated using Eq. (10). The results are shown in Fig. 5
for a potential stiffness of W = 0.04 kJ/(mol Å2), which
if �b = 1.5 Å is chosen (approximate carbon-carbon bond
length), then W corresponds to 	 ≈ 0.1. The asymptotic
approach provides an accurate approximation as the poten-
tial distance ( f /W ) increases, as predicted by the asymptotic
theory. Note that Fig. 5 shows purely monotonic behavior, in
contrast to the nonmonotonic behavior shown in Fig. 4. For
short potential distances, the weak potential provides a small
effective force that does not inhibit conformational changes
of the molecule. The resulting ensemble average end-to-end
length as a function of the effective force is then monotonic
as the potential distance increases. As the potential distance
and corresponding effective force eventually do become large,
the molecule is nearing full extension and no longer exhibits

conformational changes, so the end-to-end length remains
monotonic.

VI. CONCLUSION

The statistical thermodynamic theory for modeling single-
molecule stretching experiments was presented, and dual
asymptotic approximations were developed. The accuracy of
these approximations is based on the nondimensional pa-
rameter 	 = βW L2, where W is the device stiffness and
L the molecular length scale. When modeling experiments
with stiff devices at short distances (	 � 1), the isometric
ensemble provides an approximation with O(	−1) error, and
the asymptotic theory building upon it provides an approxi-
mation with O(	−2) error. When modeling experiments with
compliant devices at large distances (	 	 1), the isotensional
ensemble provides an approximation with O(	 ) error, and the
asymptotic theory building upon it provides an approximation
with O(	 2) error. The effectiveness of the asymptotic ap-
proach was demonstrated analytically using the freely jointed
chain model, and numerically using a molecular dynamics
calculation of a polyethylene chain. These results seemed to
indicate that 	 = 100 and 	 = 0.01 are reasonable thresh-
olds to begin accounting for the device stiffness in models that
leverage the isometric and isotensional ensembles, respec-
tively, depending on the regime of extension being considered.
Specifically, sufficiently large extensions can nonlinearly de-
form a stiff device, and sufficiently small extensions can cause
nonlinear vibrations in a compliant device. Correspondingly,
future work should consider extending this asymptotic ap-
proach to account for the possible large deformation and
nonlinear vibration of the device.
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