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Statistical mechanical constitutive theory of polymer networks:
The inextricable links between distribution, behavior, and ensemble
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A fundamental theory is presented for the mechanical response of polymer networks undergoing large
deformation which seamlessly integrates statistical mechanical principles with macroscopic thermodynamic
constitutive theory. Our formulation permits the consideration of arbitrary polymer chain behaviors when inter-
actions among chains may be neglected. This careful treatment highlights the naturally occurring correspondence
between single-chain mechanical behavior and the equilibrium distribution of chains in the network, as well as
the correspondences between different single-chain thermodynamic ensembles. We demonstrate these important
distinctions with the extensible freely jointed chain model. This statistical mechanical theory is then extended
to the continuum scale, where we utilize traditional macroscopic constitutive theory to ultimately retrieve the
Cauchy stress in terms of the deformation and polymer network statistics. Once again using the extensible freely
jointed chain model, we illustrate the importance of the naturally occurring statistical correspondences through
their effects on the stress-stretch response of the network. We additionally show that these differences vanish
when the number of links in the chain becomes sufficiently large enough, and discuss why certain methods
perform better than others before this limit is reached.
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I. INTRODUCTION

Understanding the mechanics of polymer networks is im-
portant for improving and predicting the mechanical behav-
iors of a wide range of polymeric materials, from physi-
cally crosslinked rubbers to mechanochemically responsive
networks. Constitutive models that are grounded in statistical
mechanics are especially useful because they allow the direct
incorporation of molecular phenomena and thus a funda-
mental understanding of the material. To establish a model
with such predictive power, one needs to proceed from the
statistical mechanics of single polymer chains all the way to
the macroscopic mechanical behavior of the entire material.
The meticulous detail we offer here is required to retain
generality throughout this process.

Polymer network constitutive models often utilize a single
polymer chain statistical mechanical model. The most com-
mon of these single-chain models is the freely jointed chain
(FJC) model [1], where rigid links are connected in series
and allowed to rotate about the connecting hinges without
change in energy. The mechanical response of the FJC under
end-to-end extension is determined by the reduction in con-
figurational entropy, which is then directly connected to the
equilibrium probability distribution of end-to-end lengths by
Boltzmann’s entropy formula [2]. For a large number of links
or in the case of an applied force, the mechanical response and
probability distribution of end-to-end lengths may be written
analytically using the inverse Langevin function [3]. In the
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case of an applied extension, more sophisticated methods are
necessary to obtain the mechanical response and distribution
of end-to-end lengths, such as those using series expansions
[4] or those that transform between thermodynamic ensem-
bles [5]. When the number of links approaches infinity, the
probability distribution of end-to-end lengths obeys Gaussian
statistics [6,7], and for end-to-end length much smaller than
the contour length, the mechanics of the chain become that
of the ideal, linear chain [8]. When the end-to-end length
approaches the contour length, the FJC becomes infinitely stiff
due to its inextensibility. The FJC model can be expanded to
that of the extensible freely jointed chain (EFJC) by replacing
the rigid links with stiff harmonic springs [9]. Now when the
end-to-end length approaches the contour length, the EFJC
begins to stretch the stiff harmonic links and subsequently
achieves end-to-end lengths greater than the original contour
length, hence it is extensible. Another popular set of models
are the freely rotating chain (FRC) models, where the FJC
model is adjusted by fixing all bond angles and only permit-
ting torsional angles to freely rotate [10]. This model cannot
be solved analytically and therefore requires careful numerical
techniques [11]. For small bond angles, the FRC model be-
comes the Kratky-Porod (or discrete worm-like chain) model
[12], and when the link length additionally becomes small
compared to the contour length, the FRC model becomes the
continuous worm-like chain (WLC) model. Both the discrete
and continuous forms of the WLC model have been ex-
panded to include stiff harmonic springs [13]. Recent single-
chain constitutive models include covalent bond rupture [14]
and mechanochemically activated bonds [15]. It is apparent
from this vast literature that the correspondences between
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end-to-end length probability distribution, the mechanical be-
havior, and the applied boundary conditions (thermodynamic
ensemble) are of vital significance.

Upon establishing a statistical description by way of single-
chain mechanics, the model derivation must then proceed to
connect the macroscopic deformation of the polymer network
to this single-chain description. This is typically accomplished
by way of constructing the Helmholtz free-energy density,
prescribing some aspect of the network evolution in terms of
the macroscopic deformation, connecting the network evolu-
tion back to individual chains, and using the second law of
thermodynamics analysis. Most often the second-law analysis
results in a hyperelastic model, which means that the stress
is directly related to the derivative of the free-energy density
with respect to the deformation gradient. After choosing a
single-chain model, the construction of the free-energy den-
sity for the network involves the choice of the distribution of
initial chain lengths and orientations in the network. Several
models have used discretely oriented chains to represent the
distribution of chains in the network, such as the 3-chain
[4,16], 4-chain [17,18], 8-chain [19,20], and 21 chain [21,22]
models. Other models utilize a continuous orientation distri-
bution of chains to represent the network, where some assume
that all end-to-end lengths are initially the same [23,24] and
others consider an initial distribution of end-to-end lengths
[25–27]. Polydispersity, i.e. varying contour lengths, may be
included in either the discrete [28,29] or continuous [30,31]
distribution formulations. An affine or nonaffine deformation
of the distribution can be prescribed, where the nonaffinity can
be a fundamental aspect of the initial distribution [19] or based
upon some physical constraint [21,32,33]. Unfortunately, the
natural correspondence between the choice of single-chain
model and the chain length distribution within the network
tends to be ignored in these models.

Despite decades of work, there remains a need for a
methodical and general statistical mechanics derivation of
polymer network mechanics such that the assumptions and
their implications are apparent. The approach taken here
begins from fundamental statistical mechanics, makes clear
all assumptions and places emphasis on the correspondences
between the network distribution, single-chain mechanics,
and the different thermodynamic ensembles. Most preceding
constitutive models make no reference to such nuances, and as
a result risk making considerable mistakes. Furthermore, there
has been no study on the effects that these correspondences
have on the macroscopic mechanical response of the network
and when they may be ignored. Such an approach will also
take great care in stitching this general statistical descrip-
tion into the macroscopic description, performing a detailed
second-law analysis to retrieve the stress and making sure
that all neglected terms are truly negligible. Many preceding
constitutive models use considerable assumptions to construct
the stress, lose generality by choosing a specific chain model
during the second-law analysis, and/or neglect terms that
could contribute to the stress without proof that they can be
neglected.

In this manuscript, we present a constitutive model for
polymer networks undergoing finite deformation that is con-
structed with great detail. We begin in Sec. II A from fun-
damental statistical mechanics, ensuring that the correspon-

dences between the distribution of chains in the network and
the mechanics of single-chains are understood and accounted
for. We also account for the differences between thermody-
namic ensembles, ensuring we utilize the correct ensemble
and understand the correspondence relations that allow us to
go from one to the other. Prescribing an affine deformation
to the network distribution, we extend the statistical theory
to the macroscale and perform a detailed second-law anal-
ysis to retrieve the stress in Sec. II B. In the process, we
perform many mathematical manipulations to maintain the
generality of the model. This includes the proof that a term
produced when integrating by parts is indeed zero for relevant
chain models, which has been previously taken for granted.
With this detailed framework, in Sec. III we are able to
study the macroscopic effects of the aforementioned statistical
correspondences and show that they are considerable when
chains are not sufficiently long. Throughout the manuscript,
the EFJC model is used to demonstrate the statistical corre-
spondences within the network and their effects on the macro-
scopic mechanical response of the network. This framework
will prove useful in constructing future constitutive models
for more complicated polymer networks.

II. GENERAL THEORY

A. Statistical mechanical description

Here we present a statistical mechanical description of an
ensemble of noninteracting polymer chains. The statistical
mechanical description naturally provides explicit relation-
ships between the equilibrium distribution of polymer chain
end-to-end vectors and the Helmholtz free energy of a poly-
mer chain with a given end-to-end vector; we refer to these
as the distribution-behavior correspondence relations. The
original thermodynamic ensemble (Helmholtz) for a single
chain is parameterized by an end-to-end vector, where a
simple Laplace transformation allows parametrization by the
end-to-end force in another ensemble (Gibbs). Since we desire
results from the Helmholtz ensemble but are often only able to
compute the partition function in the Gibbs ensemble, ensem-
ble transformation relations between the two—both exact and
in the thermodynamic limit—are provided. When obtaining
the single-chain free-energy function and the equilibrium
distribution of end-to-end vectors, we refer to the method that
utilizes the exact transformation as the Helmholtz method, and
that utilizing the transformation in the thermodynamic limit as
the Gibbs-Legendre method; see Fig. 1 for a schematic. Next,
we illustrate these features of our statistical description using
the EFJC model as an example chain model. We complete the
statistical theory by formulating the general evolution law for
the polymer network distribution of end-to-end vectors.

1. Helmholtz ensemble

The polymer network is taken to be represented by an en-
semble of N indistinguishable noninteracting polymer chains.
The canonical partition function is then

Q = qN

N!
, (1)
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FIG. 1. Diagram describing the exact (Helmholtz) and approximate (Gibbs-Legendre) methods of arriving at the single-chain Helmholtz
free energy ψ∗(ξ) of a chain with end-to-end vector ξ and equilibrium probability distribution Peq(ξ) of chains with that end-to-end vector.
† The Gibbs-Legendre method is approximate since the necessary Legendre transformation is only valid in the thermodynamic limit of long
chains.

where the single-chain partition function q is given by a
classical integration over the coordinates q j and momenta p j

of each of the M atoms in the chain [34],

q = 1

h3M

∫
· · ·

∫
e−βε

M∏
j=1

d3p j d3q j . (2)

Here h is Planck’s constant and β = 1/kT is the inverse
temperature, with Boltzmann’s constant k and temperature T .
The Hamiltonian ε of the chain is

ε = u(q1, . . . , qM ) +
M∑

j=1

p2
j

2mj
, (3)

where u is the potential energy function describing interaction
energies between atoms within the polymer chain, and mj is
the mass of jth atom in the chain. The momentum integra-
tions are completed to write a portion of the chain partition
function:

qmom =
M∏

j=1

(
2πmjkT

h2

)3/2

. (4)

If we take the atomic coordinates relative to the first atom
along the chain backbone, r j = q j − q1, then we can com-
plete the rigid body translation integration—where the chain
is translated over the whole volume—and pick up a factor of
V . We now have

q = qconqmomV, (5)

where the chain configuration integral qcon is then

qcon =
∫

· · ·
∫

e−βu
M∏

j=2

d3r j . (6)

If the Mth atom is the last atom along the chain backbone, then
we seek to calculate the probability density distribution Peq(ξ)
that a chain has the end-to-end vector rM = ξ at equilibrium.
This means that the probability that a chain has the end-to-end
vector within d3ξ of ξ at equilibrium would be Peq(ξ) d3ξ. We
then write q∗, the chain configuration integral corresponding
to end-to-end vector ξ, by integrating the Dirac δ function,

q∗(ξ) =
∫

· · ·
∫

e−βu(r2,...,rM )δ3(rM − ξ)
M∏

j=2

d3r j, (7)

=
∫

· · ·
∫

e−βu(r2,...,ξ)
M−1∏
j=2

d3r j . (8)

According to Boltzmann statistics, the probability of a
single-chain configuration at thermodynamic equilibrium is
e−βu/qcon, so we integrate over all configurations that have
the end-to-end vector ξ to retrieve Peq(ξ),

Peq(ξ) =
∫

· · ·
∫

e−βu

qcon
δ3(rM − ξ)

M∏
j=2

d3r j, (9)

= q∗(ξ)∫∫∫
q∗(ξ̃) d3ξ̃

= q∗(ξ)

qcon
, (10)

where ξ̃ is a dummy variable of integration; the tilde will
continue to denote dummy variables of integration. If this
equilibrium distribution is rotationally symmetric (only varies
with ξ = √

ξ · ξ), then we can use the equilibrium radial
distribution function

geq(ξ ) = 4πξ 2Peq(ξ). (11)
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The chain Helmholtz free energy ψ∗ associated with q∗ is,
from the principal thermodynamic connection formula [34],

ψ∗(ξ) = −kT ln q∗(ξ), (12)

so we may finally write the equilibrium distribution as

Peq(ξ) = e−βψ∗(ξ)∫∫∫
e−βψ∗(ξ̃) d3ξ̃

, (13)

which, if ψ∗(ξref ) = ψ∗
ref is known for some ξref , we have

ψ∗(ξ) = ψ∗
ref − kT ln

[
Peq(ξ)

Peq(ξref )

]
. (14)

We refer to Eqs. (13) and (14) as the distribution-behavior
correspondence relations, as they show a one-to-one corre-
spondence between the free energy of a chain for a given
end-to-end vector and the equilibrium distribution of such
end-to-end vectors.

2. Gibbs ensemble

The Gibbs ensemble releases the end-to-end vector con-
straint of the Helmholtz ensemble and instead applies an
end-to-end force. The Helmholtz ensemble coincides with the
canonical ensemble (which has the Helmholtz free energy
as the principal thermodynamic potential), but the Gibbs en-
semble does not exactly coincide with the isobaric-isothermal
ensemble (which has the Gibbs free energy as the principal
thermodynamic potential), despite an applied force seeming
to be analogous to an applied pressure. The naming of the
Gibbs ensemble is then perhaps a bit misleading, but we will
continue to use it since it seems to have become standard. The
Gibbs ensemble Hamiltonian is

ε = u(q1, . . . , qM ) +
M∑

j=1

p2
j

2mj
− f · (qM − q1), (15)

where f is the force that acts equally and oppositely on atoms
1 and M at the ends of the polymer chain, and qM − q1 =
rM is the end-to-end vector of the chain. The system partition
function and the momentum partition function take the same
form as Eqs. (1) and (4), respectively, and we receive the same
factor of V from the rigid body translation integration, but the
chain configuration integral corresponding to force f ,

z∗(f ) =
∫

· · ·
∫

e−βueβf ·rM

M∏
j=2

d3r j, (16)

=
∫∫∫

q∗(ξ)eβf ·ξ d3ξ, (17)

is now utilized. The chain configuration integral correspond-
ing to the Gibbs ensemble is directly a Laplace transform
of the Helmholtz ensemble chain configuration integral. The
probability density distribution that a chain experiences the
force f at equilibrium Peq

z (f ) is then given by the ratio of z∗(f )
to the integral of z∗(f ) over all end-to-end force vectors f . The
principal thermodynamic connection formula yields the Gibbs
free energy ϕ∗ associated with the force,

ϕ∗(f ) = −kT ln z∗(f ), (18)

from which we obtain the Gibbs ensemble distribution-
behavior correspondence relations:

Peq
z (f ) = e−βϕ∗(f )∫∫∫

e−βϕ∗(f̃ ) d3 f̃
, (19)

ϕ∗(f ) = ϕ∗
ref − kT ln

[
Peq
z (f )

Peq
z (fref )

]
. (20)

3. Ensemble transformations

It has been demonstrated that the mechanical response of
a given polymer chain model can differ appreciably between
the two ensembles if the thermodynamic limit (i.e., chains
consisting of sufficiently many links) is not satisfied [5]. This
is an issue because while traditional macroscopic constitutive
theories require the Helmholtz free energy of the system, sin-
gle polymer chain partition functions are often only solvable,
if at all, in the Gibbs ensemble. It is for this reason we require
general formulas to transform one ensemble into the other:
Eq. (17) allows one to retrieve the Gibbs ensemble from the
Helmholtz ensemble; its inversion, from Manca et al. [5],
allows one to retrieve the Helmholtz ensemble from the Gibbs
ensemble:

q∗(ξ) =
(

β

2π

)3 ∫∫∫
z∗(if )e−iβf ·ξ d3f . (21)

Equations (17) and (21) are the ensemble transformation
relations. In the thermodynamic limit and under appreciable
loads [35–37], fluctuations become negligible and the free
energies of the two ensembles are related by the Legendre
transformation,

ϕ∗(f ) = ψ∗(ξ) − f · ξ. (22)

Therefore, in the limit of long chains, the mechanical response
of the chain can be obtained equivalently from either ensem-
ble:

f = ∂ψ∗

∂ξ
, ξ = −∂ϕ∗

∂f
, (23)

and the two equilibrium distributions are related by

Peq
z (f )

Peq
z (fref )

= e−β(ψref −ϕref −f ·ξ)

[
Peq(ξ)

Peq(ξref )

]
. (24)

Equations (22) and (24) are the ensemble transformation
relations in the thermodynamic limit.

4. Example polymer chain model

To demonstrate the above sets of equations, we consider
the EFJC model, where the polymer chain is represented by
M = Nb + 1 atoms/hinges connected in series by Nb flexible
links of rest length 
b and harmonic potential stiffnesses kb.
Due to the nonzero potentials, the mechanical response of this
model will be due to coupled contributions from both entropic
and enthalpic effects. The EFJC model has a Gibbs ensemble
partition function that can be evaluated analytically: It is given
by Fiasconaro and Falo [9] as

z∗(η) =
{

B0
sinh(η)

η
eη2/2κ

[
1 + η

κ
coth(η)

]}Nb

, (25)
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where η = β f 
b is the nondimensional force, κ =
βkb


2
b is the nondimensional link stiffness, and B0 =

25/2π3/2β
3
bκ

−1/2. For κ → ∞, we recover the freely
joined chain (FJC) Gibbs ensemble partition function [10].
To retrieve the Helmholtz ensemble partition function we use
Eq. (21), which in this case (spherically symmetric) as shown
by Manca et al. [5] reduces to

q∗(λ) = 1

2π2Nb

3
b

1

λ

∫ ∞

0
z∗(iη) sin(Nbηλ)η dη, (26)

where λ = ξ/Nb
b is the chain end-to-end stretch relative to
the contour length Nb
b. After using Eq. (26) to calculate
q∗, we then use Eq. (12) to calculate ψ∗ from q∗, and
subsequently Eq. (13) to calculate Peq from ψ∗. Although
we have started from the Gibbs ensemble, we have calculated
ψ∗ and Peq exactly, which we will refer to as the Helmholtz
method (Fig. 1, top pathway).

The Helmholtz method is often computationally challeng-
ing, so simpler approximate methods are typically used. When
the thermodynamic limit Nb → ∞ is satisfied, the Legendre
transformation in Eq. (22) may be used to calculate the
Helmholtz free energy ψ∗ from the Gibbs free energy ϕ∗.
We will refer to this method as the Gibbs-Legendre method
(Fig. 1, bottom pathway). This method is expedient if ϕ∗ is
known exactly, which is true in the case of the EFJC model.
The exact value of ϕ∗ for the EFJC is calculated by plugging
z∗ from Eq. (25) into Eq. (18). To obtain the mechanical
response to perform the Legendre transformation, we use
Eq. (23) to obtain the nondimensional end-to-end length in
the Gibbs ensemble,

λ(η) = L(η) + η

κ

[
1 + 1 − L(η) coth(η)

1 + (η/κ ) coth(η)

]
. (27)

Now we assume that the thermodynamic limit Nb → ∞ is
satisfied and use Eq. (22) to calculate the Helmholtz free
energy for the EFJC to be

ψ∗(λ) = NbkT

{
ηL(η) + ln

[
η

sinh(η)

]

− ln
[
1 + η

κ
coth(η)

]
− ln B0

+ η2

κ

[
1

2
+ 1 − L(η) coth(η)

1 + (η/κ ) coth(η)

]}
, (28)

where we solve for η = η(λ) using Eq. (27) to get ψ∗ =
ψ∗(λ). The equilibrium distribution in the thermodynamic
limit is then calculated using Eq. (13),

Peq(λ) = 1


3
bC

(
sinh(η)[1 + (η/κ ) coth(η)]

η exp [ηL(η)]

× exp

{
η2

κ

[
1

2
+ 1 − L(η) coth(η)

1 + (η/κ ) coth(η)

]})Nb

, (29)

where C = C(Nb, κ ) is such that the distribution is normal-
ized. For κ → ∞ in Eqs. (27) and (29), we recover the FJC
mechanical response λ = L(η) and probability distribution in
the thermodynamic limit [3].

An alternative approximation method is to assume a Gaus-
sian distribution for the equilibrium distribution. This as-
sumption is valid in the limit Nb → ∞ due to the central

limit theorem. To determine this Gaussian distribution for the
EFJC model, we first approximate the mechanical response in
Eq. (27) for small forces (η � 1) by the linear relation,

λ(η) = η

cκ

, cκ = κ (κ + 1)

κ2 + 6κ + 3
, (30)

and subsequently the free energy in Eq. (28) by a quadratic
relation for η � 1. Combining these results yields the small
stretch (λ � 1) free energy,

ψ∗(λ) = 3
2 cκNbkT λ2. (31)

We now make use of this small stretch approximation to con-
struct the equilibrium distribution for Nb → ∞ using Eq. (13),
which is then

Peq(λ) =
(

3cκ

2πNb

2
b

)3/2

exp

(
−3

2
cκNbλ

2

)
. (32)

We remark that this distribution is a valid approximation for
any stretch as long as Nb → ∞, so it is common to utilize
this equilibrium distribution with the Gibbs-Legendre method
free-energy function to approximate the full Helmholtz
method.

Since the Gibbs-Legendre method is often used to ap-
proximate the true Helmholtz free energy, we plot the EFJC
nondimensional free energy (βψ∗/Nb) as a function of end-to-
end chain stretch (λ) for κ = 50 and varying Nb in Fig. 2(a),
obtained using both the Helmholtz and the Gibbs-Legendre
methods, as well as the ideal chain free energy. See that
for small values of Nb the difference in free energy between
the Helmholtz and Gibbs-Legendre methods is quite consid-
erable, such as for Nb = 3 where the relative difference is
nearly constant at 60% for λ ∈ (0.5, 1). As Nb increases, the
difference between the two methods shrinks, becoming quite
small when Nb = 25. We can also observe that the ideal chain
free energy, which matches the Gibbs-Legendre method free
energy at small stretch, does not match that of the Helmholtz
method until Nb becomes large. We repeat this analysis for
the smaller EFJC link stiffness (κ = 5) in Fig. 2(b), where
we observe the same trends but overall smaller differences
among the methods. This can be understood by reconsidering
the Gibbs ensemble partition function in Eq. (25) and the en-
semble transformation relation in Eq. (26). First consider the
case of Nb → ∞, where we will receive q∗(λ) → z∗(η)e−Nbηλ

from Eq. (26), and where the Gibbs-Legendre method results
will exactly match that of the Helmholtz method. This is
because z∗(iη) will decay rapidly as a function of η when
Nb becomes large and effectively contain a Dirac δ function.
Now for κ → 0, we see that z∗(iη) will also decay rapidly as
a function of η, which will also act as a Dirac δ function via
one definition,

δ(η) = lim
κ→0+

1√
2πκ

e−η2/2κ , (33)

which appears in z∗(iη) after recalling that B0 ∝ 1/
√

κ in
Eq. (25). This is why we observe smaller differences between
the Gibbs-Legendre and Helmholtz methods as κ decreases.
It can also be understood intuitively as a decreasing cor-
relation between the links: the link degrees of freedom in
the Gibbs ensemble are completely independent, while that
in the Helmholtz ensemble are because of the end-to-end
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FIG. 2. Nondimensional free energy per link versus end-to-end stretch for Nb = 3, 5, 10, and 25, for (a) κ = 50 and (b) κ = 5. The free
energy is plotted using both the Helmholtz and Gibbs-Legendre methods, as well as using the ideal model valid for λ � 1; the Gibbs-Legendre
and ideal results are independent of Nb.

length constraint. As κ decreases the link degrees of freedom
in the Helmholtz ensemble become increasingly independent
of each other, approaching the κ = 0 limit where they are
completely independent.

We plot the EFJC nondimensional radial distribution func-
tion (Nb
bgeq ) as a function of end-to-end stretch for κ = 50
and varying Nb in Fig. 3(a). The radial distribution function
is plotted using both the Helmholtz and the Gibbs-Legendre
methods, as well as the Nb → ∞ limiting Gaussian distri-
bution. The Gibbs-Legendre distribution tends to be quite
different from the Helmholtz distribution for small values of
Nb, while the Gaussian distribution tends to be a bit closer. By
Nb = 25, the Gaussian and Helmholtz distributions become
nearly indistinguishable, and the Gibbs-Legendre distribution
retains only a small difference from the other two. We re-
peat this analysis for a smaller EFJC link stiffness (κ = 5)
in Fig. 3(b), where we observe the same trends but over-
all smaller differences among the methods. This difference
is again explained by the more rapidly decaying z∗(iη) in

Eq. (26) as κ decreases, as previously discussed. Though the
Gibbs-Legendre method free energy is immensely closer to
the Helmholtz method free energy than the ideal chain free
energy, we see here that the Gaussian distribution—obtained
from the ideal chain free energy using the distribution-
behavior correspondence in Eq. (13)—tends to be much closer
to the Helmholtz method distribution than the Gibbs-Legendre
method distribution. Looking back to Fig. 2, this is likely
because the Gibbs-Legendre method overestimates the single-
chain free-energy increase with stretch for smaller Nb, result-
ing in an underestimate of the probability of chains at larger
stretch observed in Fig. 3 due to the distribution-behavior
correspondence relations.

5. Distribution evolution

We introduce P(ξ, t ) as the probability density distribution
of chains with end-to-end vector ξ at time t , which we pre-
sume to initially be in the equilibrium distribution, P(ξ, 0) =
Peq(ξ). Liouville’s equation [34] describes the evolution of a
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FIG. 3. Nondimensional equilibrium radial distribution function versus end-to-end stretch for Nb = 3, 5, 10, and 25, for (a) κ = 50 and
(b) κ = 5. The distribution is plotted using the Helmholtz, Gibbs-Legendre, and Gaussian methods.
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probability density P in the single-chain phase space (atomic
coordinates and momenta) as

∂P

∂t
= −

M∑
j=1

(
∂P

∂q j
· q̇ j + ∂P

∂p j
· ṗ j

)
. (34)

When we apply Liouville’s equation to P(ξ, t ), the only
nonzero derivative we retrieve is that relating to the chain
end-to-end vector ξ = qM − q1, and thus the evolution law for
the distribution of end-to-end vectors is

∂P

∂t
= −∂P

∂ξ
· ξ̇, (35)

where ξ̇ = ξ̇(ξ, t ) is left to be prescribed.

B. Macroscopic constitutive theory

To extend our theory into the macroscale, we prescribe an
affine deformation to an incompressible network and analyt-
ically solve for the distribution evolution. Equipped with this
connection between the statistical and continuum mechanics
of the polymer network, we use the Coleman-Noll proce-
dure [38] to develop the macroscopic constitutive theory. We
choose the deformation gradient F and the temperature T as
the independent thermodynamic state variables. We presume
these thermodynamic state variables to be complete, allowing
us to consider time derivatives of constitutive functions to
be implicit, i.e., we may expand them in terms of the time
derivatives of the state variables. After some derivation—
including the full treatment of a boundary integral term that,
until now, has been either omitted or otherwise assumed to
be zero—we ultimately retrieve a closed-form relation for
the Cauchy stress in terms of the applied deformation, the
chain free-energy function, and the equilibrium distribution
of end-to-end vectors.

1. Macroscopic connection

We assume that the evolution of end-to-end vectors is affine
with the deformation, ξ̇ = L · ξ, where L = Ḟ · F−1 is the
velocity gradient. Equation (35) then becomes

∂P

∂t
= −

(
∂P

∂ξ

)
· L · ξ. (36)

This first-order linear partial differential equation can be
solved analytically using the method of characteristics (see
Appendix A). Under the initial conditions F(0) = 1 and
P(ξ, 0) = Peq(ξ), the solution is

P(ξ, t ) = Peq[F−1(t ) · ξ], (37)

which simply states that the probability density of a chain
having end-to-end vector ξ at time t is equal to the probability
density of that end-to-end vector mapped backward to the cor-
responding end-to-end vector in the equilibrium distribution.

2. Second-law analysis

Now that we are equipped with the probability distribution
of polymer chains within the network as a function of the
deformation, we write the current Helmholtz free-energy den-
sity of the network (a) by integrating the probability-weighted

free-energy function over all end-to-end vectors,

a(t ) = n
∫∫∫

P(ξ, t )ψ∗(ξ) d3ξ − p(J − 1), (38)

where n = N/V is the number density of chains and p is the
pressure enforcing the incompressibility constraint that J =
det(F) = 1. Note that we have only included contributions
related to the chain configuration integral and left out those
related to the chain momentum integral. This is because the
latter terms will only introduce spherical terms to the stress
(ideal gas law) and therefore can be lumped into the pressure
without loss of generality. Thermodynamically admissible
processes satisfy the Clausius-Duhem inequality [39],

ȧ + sṪ − σ : L � 0, (39)

where s is the entropy density and σ is the Cauchy stress
tensor. This reduced form of the Clausius-Duhem inequality
involves several classical assumptions that are standard in the
Coleman-Noll procedure, such as the neglect of nonmechan-
ical work, the constitutive relations for the entropy flux and
entropy source, and in this case Fourier’s law for the heat flux
[40]. We expand the implicit time derivative of the Helmholtz
free-energy density using our complete set of state variables,

ȧ =
(

∂a

∂t

)
T

+
(

∂a

∂t

)
F

(40)

=
(

∂a

∂F

)
T

: Ḟ +
(

∂a

∂T

)
F
Ṫ , (41)

and substitute this result back into Eq. (39) for[(
∂a

∂T

)
F

+ s

]
Ṫ +

[(
∂a

∂F

)
T

· FT − σ

]
: L � 0. (42)

We now consider the set of processes where the deformation
is held fixed, L = 0, and the temperature is varied arbitrarily.
Since Ṫ can be any real number, positive or negative, and this
inequality must hold, we see that the term in the first set of
brackets must always be zero and we receive the expected
constitutive relation for the entropy density,

s = −
(

∂a

∂T

)
F
, (43)

and after going back to our original derivative notation, we are
left with the remaining dissipation inequality,(

∂a

∂t

)
T

− σ : L � 0. (44)

Several steps are then taken to proceed from Eq. (44) and
retrieve the stress. We first neglect dissipative stresses, thus
taking the equality in Eq. (44) and receiving a hyperelastic
stress. Next, we take Eq. (38) and assume spherical symmetry
in ψ∗, which causes the stress to be nonpolar. We then require
that ψ∗ grows sufficiently fast as ξ → ∞, to show that the
boundary integral term resulting from integration by parts is
zero. The full derivation is presented in Appendix B and yields
the stress to be

σ(t ) = n
∫∫∫

Peq[F−1(t ) · ξ]

(
∂ψ∗

∂ξ

)(
ξξ

ξ

)
d3ξ

− [peq + �p(t )]1, (45)
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where 1 is the identity tensor, the differential pressure �p(t )
enforces incompressibility, and the equilibrium pressure peq

[from σ(0) = 0] is

peq = n

3

∫
geq(ξ )

(
∂ψ∗

∂ξ

)
ξ dξ . (46)

The derivative of the chain Helmholtz free energy can be
replaced with the force using Eq. (23), but one must be
careful to ensure that the force is computed in the Helmholtz
ensemble: the force from the Gibbs ensemble may only be
used in the thermodynamic limit (Nb → ∞). If we utilize the
ideal chain free energy from Eq. (31), then one can easily
show that the neo-Hookean model results, as expected (see
Appendix C).

C. Implementation

To close this section, we point out some important as-
pects of the model implementation. It happens that Eq. (26)
is difficult to evaluate with the EFJC partition function in
Eq. (25) for moderate to large Nb, which is due to the inte-
grand oscillating rapidly and decaying slowly. While certain
integration schemes may perform reasonably well for small or
large Nb, it is most desirable to use an integration scheme that
remains accurate for the full range of Nb being considered. To
evaluate this integral with high precision, we used the double
exponential quadrature scheme presented by Ooura and Mori
[41] and their Fortran script intdeo.f that implements it, as
well as the arbitrary precision Fortran package MPFUN2015
provided by Bailey [42]. These calculations were carried out
using the Extreme Science and Engineering Discovery Envi-
ronment (XSEDE) Stampede2 cluster [43]. When calculating
the integrals in Eq. (45) to retrieve the stress, it is unwieldy
to repeatedly call a function to exactly evaluate ψ∗(λ) for
the EFJC as λ → ∞. See from Eqs. (27) and (28) that λ ∼
η/κ and βψ∗ ∼ Nbη

2/κ as η → ∞, which combined shows
that βψ∗ ∼ Nbκλ2 as λ → ∞. The neglected terms in this
asymptotic relation for ψ∗(λ) are quite small, so the relation
is accurate even for λ only moderately above unity. Therefore,
to greatly speed up the computation of the stress at negligible
cost to accuracy, we fit a quadratic function to ψ∗ for large λ

and call this function instead when λ is above a certain value.

III. MACROSCOPIC RESULTS

Now that we have fully formulated the theory, we are
able to explicitly examine the effects that changes in the
statistical description have on the macroscopic mechanics.
Traditionally in polymer network constitutive modeling, the
Helmholtz ensemble has been approximated using the Leg-
endre transformation from the Gibbs ensemble, so we will
start by examining the difference in macroscopic mechanical
response when using these Helmholtz and Gibbs-Legendre
methods. Another common choice in these constitutive mod-
els is to assume that the equilibrium distribution is Gaussian,
so we will then examine how the true Helmholtz ensemble
mechanical response differs from that assuming the Gaussian
distribution and the Gibbs-Legendre free-energy function; we
will refer to this as the Gibbs-Legendre-Gaussian method. In
both of these studies, we will see that a long enough polymer

chain causes all approaches to result in the same mechanical
response. This convergence occurs before the Nb → ∞ limit
represented by choosing the ideal chain free-energy function
and the Gaussian distribution, which is the neo-Hookean
model.

We apply the Helmholtz and Gibbs-Legendre methods to
a polymer network modeled to consist of EFJCs. z∗ for the
EFJC is given by Eq. (25). The Helmholtz method takes z∗
and uses Eq. (26) to compute q∗, then computes ψ∗ using
Eq. (12) and Peq using Eq. (22). The Gibbs-Legendre method
assumes Nb → ∞ to use ψ∗ in Eq. (28) and Peq in Eq. (29).
In both methods, we compute the stress under uniaxial tension
in the 1-direction using Eq. (45), where the deformation
gradient is diagonal with components due to symmetry and
incompressibility, F22 = F33 = 1/

√
F11. In Fig. 4(a) we plot

the nondimensional uniaxial stress βσ11/n versus the applied
stretch F11 using the nondimensional EFJC stiffness κ = 50
and an increasing numbers of links Nb = 5, 10, and 25.
The neo-Hookean stress-stretch response – retrieved through
using Eq. (31) for ψ∗ and Eq. (32) for Peq – is included
for reference. For small numbers of links such as Nb = 5,
the Gibbs-Legendre method drastically underestimates the
overall stiffness of the true stress response from the Helmholtz
method. This difference shrinks as Nb increases, becoming
only a tiny (but increasing with stretch) difference when
Nb = 25, analogous to the differences between the free-energy
functions and the equilibrium distributions shrinking in Figs. 2
and 3. We see that the two methods seem to converge before
the limit Nb → ∞ is truly reached, where the neo-Hookean
mechanical response would be retrieved. We have repeated
the same analysis for the lower stiffness (κ = 5) in Fig. 4(b),
where we observe the same behavior as Nb increases, but in
general less difference between the two methods compared to
the κ = 50 case for any Nb. These features are independent
of loading mode, as is evident by the above analyses imple-
mented for equibiaxial tension and simple shear (Fig. 5). For
equibiaxial tension we apply F11 = F22, where incompress-
ibility requires F33 = 1/F 2

11, and for simple shear we apply
F12, where F11 = F22 = F33 = 1.

As previously mentioned, the equilibrium distribution Peq

tends towards Gaussian as Nb → ∞. It is common for poly-
mer network constitutive models to choose a nonideal free
energy function ψ∗ but assume Nb is large enough to war-
rant the use of the Gaussian Peq, rather than the Peq from
the distribution-behavior correspondence relation given by
Eq. (14). For the case of the EFJC, the limit Nb → ∞ results
in the Gaussian Peq given by Eq. (32). In attempting to approx-
imate the true Helmholtz method in the limit as Nb → ∞, one
would then assume a Gaussian equilibrium distribution and
either use the Helmholtz method or Gibbs-Legendre method
for ψ∗. We will neglect the case of the Helmholtz method
ψ∗ combined with the Gaussian Peq, since by distribution-
behavior correspondence, one could simply find the true Peq

after knowing ψ∗. In either case, the macroscopic mechanical
response will converge to that of the true Helmholtz method
when Nb becomes sufficiently large.

We apply the Gibbs-Legendre-Gaussian method to a poly-
mer network modeled to consist of EFJCs. The Gibbs-
Legendre-Gaussian method uses ψ∗ from Eq. (28) and the
Gaussian Peq from Eq. (32). Taking the nondimensional EFJC
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FIG. 4. Nondimensional uniaxial stress-stretch results for the EFJC network with (a) κ = 50 and (b) κ = 5, for Nb = 5, 10, and 25.
This mechanical response is plotted using the true method (Helmholtz) and two approximation methods (Gibbs-Legendre, Gibbs-Legendre-
Gaussian). Shading indicates equal Nb value. The neo-Hookean response is included as reference.

stiffness κ = 50, in Fig. 4(a) we plot the nondimensional
stress βσ11/n versus the applied stretch F11 for increasing
numbers of links Nb = 5, 10, and 25. The Gibbs-Legendre-
Gaussian method does well matching the tangent stiffness and
keeping the relative error small at larger stretches, but tends
to do poorly at small to intermediate stretches (F11 � 2). We
also see that this method seems to converge to the Helmholtz
method stress-stretch response before the limit Nb → ∞ is
truly reached, where the neo-Hookean mechanical response
would be retrieved. We have repeated the same analysis for
the lower stiffness κ = 5 in Fig. 4(b), where we observe the
same trends but smaller relative errors, since as previously
discussed and shown in Fig. 3, the distributions from different
methods become more alike for smaller κ .

When comparing the three methods in Figs. 4 and 5, we see
that the Gibbs-Legendre method tends to underestimate the
true mechanical response given by the Helmholtz method, and
the Gibbs-Legendre-Gaussian method tends to overestimate

it, especially at small stretches. To understand this further,
we can consider the initial moduli in each case by applying
an infinitesimal deformation F = 1 + E, where E is the in-
finitesimal strain tensor. Straightforward analysis shows (see
Appendix D) that the stress from Eq. (45) then becomes

σ(t ) = μE(t ) − �p(t )1, (47)

where method-specific shear modulus μ is given by

μ = 8π

15
nkT

∫∫∫ (
−∂Peq

∂ξ

)(
∂βψ∗

∂ξ

)
ξ 4 dξ . (48)

We find �p by enforcing incompressibility via tr(E) = 0,
from which we find the initial moduli to be 3μ/2, 3μ, and μ

for uniaxial tension, equibiaxial tension, and simple shear, re-
spectively. For the neo-Hookean model we receive μ = 2nkT ,
as expected, whereas for the other methods we cannot analyti-
cally compute the integral but in general receive μ � 2nkT .
We can, however, compute the shear modulus in specific
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FIG. 5. Nondimensional (a) equibiaxial and (b) simple shear stress-stretch results for the EFJC network with κ = 50 for Nb = 5, 10, and
25. This mechanical response is plotted using the true method (Helmholtz) and two approximation methods (Gibbs-Legendre, Gibbs-Legendre-
Gaussian). Shading indicates equal Nb value. The neo-Hookean response is included as reference.
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cases: for Nb = 5 and κ = 50, μ = 2.2322 for the Helmholtz
method, μ = 2.1914 for the Gibbs-Legendre method, and
μ = 3.0215 for the Gibbs-Legendre-Gaussian method. See
that while the Gibbs-Legendre method underestimates the
modulus, the Gibbs-Legendre-Gaussian method drastically
overestimates it, which is why we observe a poor per-
formance of the Gibbs-Legendre-Gaussian method at small
stretches in Figs. 4 and 5. We see this difference even persists
when Nb = 25 and κ = 50—where μ = 2.0309, 2.0306, and
2.1113—and when Nb = 5 and κ = 5—where μ = 2.1020,
2.0804, and 2.3381—for the Helmholtz, Gibbs-Legendre,
and Gibbs-Legendre-Gaussian methods, respectively. These
differences in modulus occur because the Gibbs-Legendre-
Gaussian method ignores distribution-behavior correspon-
dence. The Gibbs-Legendre method tends to overestimate
the free energy (Fig. 2), which causes the Gibbs-Legendre
method distribution (Fig. 3) to underestimate the equilibrium
amount of chains at larger stretch. These two inaccuracies
then naturally cancel to some extent when integrating for the
modulus, but when a noncorresponding distribution is instead
used—such as in the Gibbs-Legendre-Gaussian method—
this cancellation does not occur. The Gaussian distribution
(Fig. 3) predicts an increased equilibrium number of chains
at larger stretch, which combined with the Gibbs-Legendre
method overestimated free energy will produce a signifi-
cantly overestimated modulus. This also explains the poor
convergence of the Gibbs-Legendre-Gaussian method as Nb

increases, which is especially evident from Fig. 5(b) where the
Gibbs-Legendre method is nearly exact for Nb = 25 while the
Gibbs-Legendre-Gaussian method is not. Therefore, it seems
that it is better to obey distribution-behavior correspondence
in using the Gibbs-Legendre method for small to intermediate
stretches and/or larger number of links. For a large stretch and
small number of links, it is seemingly better to instead use
the method with the more accurate equilibrium distribution,
which here is the Gibbs-Legendre-Gaussian method. For a
truly large number of links, we can also be certain that
either method will produce accurate approximations of the
Helmholtz method mechanical response.

IV. CONCLUSION

We have performed a fundamental statistical mechanical
derivation to account for the naturally occurring correspon-
dences between the mechanical behavior of a single poly-
mer chain and the equilibrium distribution of a network of
such chains. Correspondences between different single-chain
thermodynamic ensembles—both exact and in the thermody-
namic limit—as well as the Gaussian limit of the equilibrium
distribution in either ensemble, were also accounted for and
discussed in detail using the extensible freely jointed chain
model as an example. This elaborate framework was then kept
in-tact as we considered the macroscopic constitutive theory
of the polymer network and derived the Cauchy stress in terms
of the affine deformation of a general network of polymer
chains. We used this constitutive relation for the stress to il-
lustrate that important distinctions in the statistical description
persist to play an important role in the observed macroscopic
mechanical response, at least until the number of links in
the polymer chains becomes large. Obeying the distribution-

behavior correspondence relations allowed a more accurate
approximation of the macroscopic stress at small to interme-
diate deformations and/or longer chain lengths, even though
this corresponding equilibrium distribution was a worse match
to the true distribution than the Gaussian approximation.
However, when chains are short and the deformation is large,
we saw that it was better to utilize the Gaussian distribu-
tion, which can be attributed to the extensive evolution the
initial distribution undergoes during large deformations. This
meticulous treatment is vital for future constitutive model con-
struction and is readily applicable to more complex polymer
systems. This macroscopic framework is readily compatible
with any chain models that allow the equilibrium probability
distribution to be normalized and are infinitely extensible.
Critically, this includes common biopolymer models such as
the wormlike chain model as long as the extensible forms are
used. This framework does not accommodate potentials that
simulate bond breaking such as the Morse potential, but bond
breaking could be captured by instead including a reaction
pathway to broken chains.
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APPENDIX A: SOLUTION FOR THE NETWORK
DISTRIBUTION

We seek to analytically solve Eq. (36) to evaluate the prob-
ability distribution P(ξ, t ) at any time under the deformation
F(t ). A new set of variables is taken: α = (ξ, t )T with gradient
∇α = (∂/∂ξ, ∂/∂t )T and vector b = ([L(t ) · ξ], 1)T . We may
then rewrite Eq. (36) as the concise linear partial differential
equation,

b(α) · ∇αP(α) = 0. (A1)

This type of partial differential equation can be solved using
the method of characteristics. The characteristic solutions are
parameterized by s in the system of first-order linear ordinary
differential equations given by

dα

ds
= b[α(s)], (A2a)

dP

ds
= 0. (A2b)

Eq. (A2a) is a vector equation with four components (three for
ξ, one for t). Consider the t component,

dt

ds
= 1, (A3)

which simply shows that t and s differ by a constant, which
we will now choose to be zero, thereby taking t (s) = s. The ξ

components of Eq. (A2a),

dξ

ds
= L(s) · ξ, (A4)
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are solved after taking ξ(0) = ξ0 and F(0) = 1 by

ξ(s) = F(s) · ξ0. (A5)

Equation (A2b) shows that P is constant when varying only s,

P[ξ(s), t (s)] = constant, (A6)

where using Eq. (A5) and t = s, and assuming we know P at
some previous time τ < t , we then have the solution

P[F(t ) · ξ0, t] = P[F(τ ) · ξ0, τ ]. (A7)

We are free to choose ξ0 = F−1 · ξ and retrieve

P(ξ, t ) = P[(τ )F−1(t ) · ξ, τ ], (A8)

where we have used the deformation at t relative to the
deformation at a previous time previous time τ < t , denoted
as (τ )F(t ), given by Paolucci [40] as

(τ )F(t ) = F(t ) · F−1(τ ). (A9)

Now, if we presume that the network is at equilibrium at time
τ = 0, then we have P(ξ, 0) = Peq(ξ) and (0)F(t ) = F(t ), and
our solution then becomes

P(ξ, t ) = Peq[F−1(t ) · ξ], (A10)

which is Eq. (37) from the manuscript.

APPENDIX B: RETRIEVING THE STRESS

Starting with Eqs. (38) and (44), we seek to retrieve
a closed-form relation for the stress that does not include
gradients of the network distribution of end-to-end vectors.
We first relate the stress to the Helmholtz free energy using
the hyperelastic formula (by way of neglecting dissipative
stresses) and the solution for the distribution evolution in
Eq. (36), where a spherical pressure term is included due to
incompressibility. We then perform integration by parts, and
after proving that the resulting boundary integral term is zero
for relevant chain models, we retrieve the stress as an integral
function of the network equilibrium distribution, the applied
deformation, and the single-chain mechanical response.

1. Simplifications and integration by parts

We begin by taking the time derivative of a given by
Eq. (38) under constant temperature, so that it can later be
used with Eq. (44),(

∂a

∂t

)
T

= n
∫∫∫ (

∂P

∂t

)
T

ψ∗ d3ξ − p

(
∂J

∂t

)
T

, (B1)

where we know the evolution of P from Eq. (36), we have
chosen n to be constant due to the incompressibility constraint
(we are free to consider the n derivatives to be nonzero and
carry them through this derivation, but at the end they will
be lumped into the pressure since they only produce spherical
terms, thus leaving the same results). For the last term, we use(

∂J

∂t

)
T

= J1 : L. (B2)

Substituting (with J = 1) the above into Eq. (44) and neglect-
ing dissipative stresses (taking the inequality to be an equality)

then shows that the stress must be

σ = −n
∫∫∫ (

∂P

∂ξ

)
ψ∗ξ d3ξ − p1. (B3)

We now seek to rewrite the stress in a way that does not
include gradients of P. We perform the integration by parts∫∫∫ (

∂P

∂ξ

)
ψ∗ξ d3ξ =

∫∫
Pψ∗

(
ξξ

ξ

)
d2ξ

−
∫∫∫

P

[(
∂ψ∗

∂ξ

)
ξ + ψ∗1

]
d3ξ,

(B4)

where the double integral is along the boundary ξ → ∞ with
unit normal vector ξ̂ = ξ/ξ , and d2ξ is the surface element.
We are free to lump the spherical term into p1 without loss of
generality. Note that we have not taken into account that the
molecular partition functions may depend on the volume—
this dependence would produce more spherical terms that
would also now be lumped into p. The stress is now written as

σ = n
∫∫∫

P

(
∂ψ∗

∂ξ

)
ξ d3ξ − n

∫∫
Pψ∗

(
ξξ

ξ

)
d2ξ − p1.

(B5)

If we then assume that ψ∗ is rotationally symmetric, then we
receive the nonpolar stress,

σ = n
∫∫∫

P

(
∂ψ∗

∂ξ

)(
ξξ

ξ

)
d3ξ

− n
∫∫

Pψ∗
(

ξξ

ξ

)
d2ξ − p1. (B6)

Taking the term from the integration along the boundary to
be zero, taking p = peq + �p, and using the solution for P in
Eq. (37), we receive

σ(t ) = n
∫∫∫

Peq[F−1(t ) · ξ]

(
∂ψ∗

∂ξ

)(
ξξ

ξ

)
d3ξ

− [peq + �p(t )]1, (B7)

which is Eq. (45) from the manuscript. In the following
section we discuss the boundary integral stress term in depth.

2. The boundary integral stress term

We now consider the stress from the integration along the
boundary in Eq. (B6) to show that it is zero for arbitrary
deformations as long as ψ∗ satisfies certain growth criteria.
Using Eq. (37) and taking dS = (ξ/ξ ) d2ξ, the boundary
integral stress term is

σ̂ = n
∫∫

Peq(F−1 · ξ)ψ∗(ξ)ξ dS. (B8)

We recall that ψ∗ had been assumed to be rotationally sym-
metric, and the boundary is along ξ → ∞, so we may take
ψ∗ out of the integrand and write

σ̂ = n lim
ξ→∞

[ψ∗(ξ )]
∫∫

Peq
(
F−1 · ξ

)
ξ dS. (B9)

We take the change of variables ξ �→ F · ξ, where as pointed
out by Paolucci [40], the surface element transforms as dS �→
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JF−T · dS. We also use J = 1 and then receive

σ̂ = n lim
ξ→∞

[ψ∗(ξ )]
∫∫

Peq(ξ)(F · ξ)F−T · dS. (B10)

Since ψ∗ is rotationally symmetric, by the distribution-
behavior correspondence in Eq. (13) Peq is rotationally sym-
metric as well. We may then remove Peq from the integrand
along with the deformation terms for

σ̂ = n lim
ξ→∞

[ψ∗(ξ )Peq(ξ )]

{
FF−T :

∫∫
ξ dS

}
, (B11)

and now we use dS = ξξ d�, where d� is the differential
solid angle, and remove factors of ξ from the integrand to
finally write σ̂ as

σ̂ =
(

4πn

3
1
)

lim
ξ→∞

[ξ 3ψ∗(ξ )Peq(ξ )], (B12)

where the term in the parentheses was retrieved from

FF−T :
∫∫

ξ̂ξ̂ d� = F ·
(

4π

3
1
)

· F−1 = 4π

3
1. (B13)

So far we have shown that the stress contributed by σ̂ is
spherical, and could therefore be lumped into the pressure
term −p1, as long as it is finite. We are then tasked with
proving that the limit in Eq. (B12) is finite, but we will instead
prove it is zero. We will accomplish this by requiring that ψ∗
grows sufficiently fast as ξ → ∞, and using l’Hôpital’s rule
and the squeeze theorem. To start, we require that the growth
of ψ∗ as ξ → ∞ is greater than that of a logarithm function,
i.e.,

lim
ξ→∞

[
ψ∗(ξ )

c ln(ξ )

]
= ∞, ∀c > 0. (B14)

This is required to guarantee that the denominator of Eq. (13)
is finite, but we will use it here as well. Take Eq. (13) with
the denominator now understood to be a finite constant, thus
eliminating it, as we use the limit in Eq. (B12) to define the
functional of ψ∗(ξ ),

W (ψ∗) = lim
ξ→∞

[
ξ 3ψ∗(ξ )

eβψ∗(ξ )

]
, (B15)

where we can assume that β > 0. See from Eq. (B14) that
we have already required that ψ∗ is positive as ξ → ∞, so
we have in turn required that W (ψ∗) � 0. Also see from
Eq. (B15) that W (ψ∗) � W (c ln ξ ) for all ψ∗ that satisfy the
requirement from Eq. (B14), so together we have

W (c ln ξ ) � W (ψ∗) � 0, ∀c > 0. (B16)

Next, let us consider the special (albeit prohibited for ad-
missible ψ∗) case of ψ∗ = c ln ξ , where we repeatedly use
l’Hôpital’s rule to show

W (c ln ξ ) = lim
ξ→∞

[
cξ 3 ln ξ

ξ cβ

]
, (B17)

= lim
ξ→∞

[
6ξ 3−cβ

β(cβ − 1)(cβ − 2)(cβ − 3)

]
, (B18)

to see that W (c ln ξ ) = 0 for all cβ > 3. Since Eq. (B16)
holds for all cβ > 3, by the squeeze theorem we retrieve
W (ψ∗) = 0 for any ψ∗ that satisfies Eq. (B14). Thus, the

stress from the integration along the boundary must be zero,
σ̂ = 0, for any rotationally symmetric ψ∗ that grows faster
than logarithmically as ξ → ∞. This is true for the EFJC
model considered here.

APPENDIX C: REDUCTION TO NEO-HOOKEAN MODEL

The neo-Hookean model is retrieved when the ideal chain
free energy in Eq. (31) and the corresponding equilibrium
distribution in Eq. (32) are utilized. Substitution of these into
the stress from Eq. (45) yields

σ = nkT

(2π )3/2

∫∫∫
exp

(
−1

2
‖F−1 · v‖2

2

)
vv d3v

− [peq + �p]1, (C1)

where we have made convenient use of the new nondimen-
sional variable

v = λ
√

3cκNb = ξ

√
3cκ

Nb

2
b

, (C2)

and where ‖a‖2
2 = a · a. We may take the change of variables

v �→ F · v, where d3v is unaltered due to incompressibility, to
instead write the stress as

σ = nkT

(2π )3/2

(
FFT :

∫∫∫
e−v2/2 vv d3v

)
− [peq + �p]1. (C3)

This integral can be directly computed,∫∫∫
e−v2/2 vv d3v = (2π )3/2 1, (C4)

and we compute the same type of integral to retrieve peq =
nkT . Our end result is now seen to be

σ(t ) = nkT [B(t ) − 1] − �p(t )1, (C5)

which is exactly the incompressible neo-Hookean model with
shear modulus nkT .

APPENDIX D: INFINITESIMAL DEFORMATION

Here we seek to find the reduced form of the stress from
Eq. (45) when an infinitesimal deformation F = 1 + E is
applied, where E2 ≈ 0. Incompressibility is now enforced
via tr(E) = 0, and the inverse is F−1 = 1 − E. We take
Peq(F−1 · ξ) appearing in Eq. (45), which we can write in term
of ψ∗(F−1 · ξ) using Eq. (13), and is expanded as

ψ∗(F−1 · ξ) = ψ∗(ξ) − E :

(
∂ψ∗

∂ξ
ξ

)
+ O(E2). (D1)

We substitute this into Eq. (13) to obtain

Peq(F−1 · ξ) = Peq(ξ)eE:( ∂βψ∗
∂ξ

ξ)+O(E2 )
. (D2)

The equilibrium pressure peq is the form of the stress when
F = 1, so we will receive a term in the integrand of the
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following form, which is simplified for small E as

Peq(ξ)

[
e

E:
(

∂βψ∗
∂ξ

ξ
)
+O(E2 ) − 1

]

= Peq(ξ)

[
E :

(
∂βψ∗

∂ξ
ξ

)
+ O(E2)

]
, (D3)

= E :

(
−∂Peq

∂ξ
ξ

)
+ O(E2). (D4)

We now recall that both Peq and ψ∗ are spherically symmetric,
and substitute into Eq. (45) for

σ = n
∫ ∞

0

(
−∂Peq

∂ξ

)(
∂ψ∗

∂ξ

)
ξ 4 dξ

× E :
∫∫

ξ̂ξ̂ξ̂ξ̂ d� − �p1 + O(E2). (D5)

Now, after completing the integral

E :
∫∫

ξ̂ξ̂ξ̂ξ̂ d� = 4π

15
[2E + tr(E)1], (D6)

where tr(E) = 0 here, and then defining the shear modulus as

μ = 8π

15
nkT

∫∫∫ (
−∂Peq

∂ξ

)(
∂βψ∗

∂ξ

)
ξ 4 dξ, (D7)

we can finally write the stress as

σ(t ) = μE(t ) − �p(t )1 + O(E2), (D8)

which are Eqs. (47) and (48) from the manuscript.
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