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ABSTRACT

This report is a comprehensive guide to the nonlinear viscoelastic Spectacular model, which is an
isotropic, thermo-rheologically simple constitutive model for glass-forming materials, such as
amorphous polymers. Spectacular is intermediate in complexity to the previous PEC and SPEC
models (Potential Energy Clock and Simplified Potential Energy Clock models, respectively).
The model form consists of two parts: a Helmholtz free energy functional and a nonlinear
material clock that controls the rate of viscoelastic relaxation. The Helmholtz free energy is
derived from a series expansion about a reference state. Expressions for the stress and entropy
functionals are derived from the Helmholtz free energy following the Rational Mechanics
approach. The material clock depends on a simplified expression for the potential energy, which
itself is a functional of the temperature and strain histories. This report describes the
thermo-mechanical theory of Spectacular, the numerical methods for time-integrating the model,
model verification for its implementation in LAMÉ, a user guide for its implementation in
LAMÉ, and ideas for future work. A number of appendices provide supplementary mathematical
details and a description of the procedure used to derive the simplified potential energy from the
full expression for the potential energy. The goal of this report is create a convenient
point-of-entry for engineers who wish to learn more about Spectacular, but also to serve as a
reference manual for advanced users of the model.
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EXECUTIVE SUMMARY

Fiscal year 2023 developments are summarized here with references to the sections, figures, and
equations that fully describe the recent model changes.

Addition of a non-diverging shift factor that transitions from WLF to Arrhenius. A new
option for the shift factor was added. Previously, the shift factor used a WLF form. Now, the shift
factor can also be defined as a piecewise function that is WLF in the rubbery state and Arrhenius
in the glassy state, see Eq. (2.43). Unlike the WLF equation, the Arrhenius equation does not
diverge for positive values, and is consistent with the equilibrium sub–glass transition shift factor
measured in experiments on amber aged for 20-million years [2]. Proper implementation of the
piecewise shift factor is demonstrated in Fig. 5-1. In the model, the shift factor is a function of the
state variable N, which is a proxy for the simplified potential energy, but has units of temperature.
For convenience, the user can instead define the equilibrium shift factor as a function of
temperature. The temperature form for the shift factor is shown in Eq. (2.48). Internally, the
model will approximately convert the temperature-based parameters to the N-based parameters
using Eqs. (2.51) to (2.53) and (2.55). Demonstration of the conversion from the
temperature-based shift factor equation to the N-based shift factor equation is shown in Fig. 5-2.
Previously, the diverging form of the WLF-only shift factor caused the yield stress to age far
beyond experimental measurements [3]. Figure 5-3 demonstrates that this issue can be addressed
using the new non-diverging shift factor.

Addition of isotropic strain hardening through strain-dependent bulk and shear moduli.
Isotropic strain hardening was added to the model following one of the approaches discussed in
SAND2020-0160CTF [4]. Polymers exhibit large-strain hardening, which can arrest instabilities
that begin from post-yield softening. If a constitutive model does not include strain hardening,
then not only can the model not predict the large-strain behavior of many polymers, but
instabilities from softening can lead to non-convergence of finite element models. In Spectacular,
strain hardening was implemented by allowing the bulk and shear modulus, both glassy and
rubbery, to depend on strain. To maintain the isotropic nature of Spectacular, the moduli depend
linearly on the three generic invariants of the strain; see Eqs. (2.13), (2.14), (2.17) and (2.18).
This dependence of the moduli on strain gives rise to second-order integral terms in the stress
equation; see Eq. (2.39). The prefactors for these second-order integrals involve derivatives of the
moduli with respect to strain; see Eqs. (2.24) to (2.26) and (2.30). Figure 5-5 shows that the strain
hardening terms allow the model to predict stable tensile creep.

Modification of the equilibrium heat capacity terms. The original PEC model [5, 6] was a full
thermo-mechanical description of a viscoelastic material, and therefore included thermal terms.
These thermal terms were removed as part of the simplification from PEC to SPEC [7]. Thermal
terms were added back into Spectacular in 2019 according to SAND2019-12917CTF [8]. The
equilibrium heat capacity terms as formulated in SAND2019-12917CTF [8] exhibited undesirable
behaviors that were identified in SAND2021-11193 [1]. Accordingly, the equilibrium heat
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capacity terms were modified to eliminate the undesirable behavior in SAND2021-9851CTF [9].
However, by studying the form of the potential energy in Appendix B, it became clear that a
certain symmetry must exist between the equilibrium and integral terms. To enforce that
symmetry, the equilibrium heat capacity terms have been modified once again. Their current form
is shown in Eq. (2.7). The new thermal terms have been verified as shown in Section 5.5.

Updated material clock for consistency with the PEC theory, and a flexible clock definition
for backwards compatibility with older versions of Spectacular. The PEC model used four
relaxation functions, one for each memory term in the free energy. The functions f1, f2, f3, and f4
were related to volume, shear, thermal strain, and thermal relaxations, respectively. As part of
simplifying PEC to SPEC, only f1 and f2 were kept, as it was assumed that f1 ≈ f3 ≈ f4.
Following the previous PEC theory, Spectacular uses four independent relaxation functions. To be
consistent with the PEC theory, f4 should appear in the thermal memory term of the clock and f3
should appear in the volume memory term of the clock. However, because previous versions of
Spectacular did not include thermal terms, older versions of Spectacular used f3 and f1 in the
thermal and volume memory terms, respectively. For backwards compatibility with calibrations
generated using the older Spectacular code, users can choose the relaxation functions used with
the thermal and volume terms in the clock. The user’s choices for the relaxation functions in the
thermal and volume terms are represented by the indices T and V , respectively, in Eq. (2.46).

New parameter for deactivating thermal history in the clock. A new parameter C0 was added
that allows the user to deactivate the thermal memory term in the clock. The only choice
consistent with the PEC and SPEC theories is C0 = 1, but setting C0 = 0 may be useful for
reducing coupling when formulating verification exercises. Furthermore, when C0 =C3 =C4 = 0,
all memory terms in the clock are deactivated and the clock reduces to an explicit function of
temperature. The new parameter C0 appears in Eq. (2.46).

Improved robustness by allowing the Newton–Raphson method to restart from the
equilibrium solution. Typically, the Newton–Raphson method in Spectacular uses the
converged shift factor from the previous timestep as the initial guess for the current timestep.
However, when the model is heated from a state with a high shift factor, the memory terms may
suddenly relax to zero over a single timestep. When this happens, the previously converged shift
factor is a poor initial guess and prevents the Newton–Raphson method from converging. Often,
when this happens, using the equilibrium shift factor as the initial guess allows the
Newton–Raphson method to converge. To improve the robustness of the model, if the
Newton–Raphson method fails, it is restarted using the equilibrium shift factor as the initial guess.
A more complete description of the equilibrium restart is given in Section 4.2.2.

Addition of state variables for qualitatively comparing the PEC and SPEC material clocks.
State variables were added to the model that enable comparisons between the PEC and SPEC
material clocks. However, because of the implicit nature of the clocks, the PEC clock variables
are only useful for qualitative comparisons between the two model forms. For thermo-mechanical
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histories where the PEC and SPEC clocks give approximately equal values for the shift factor, the
two model forms should predict approximately the same constitutive behavior. However, when
the two clocks are different, it is only possible to know that PEC would predict a different
constitutive response than SPEC, but it is not possible to quantitatively determine the response
without actually running the PEC model. This is because the PEC clock is only included as a state
variable, and so its memory terms are relaxing according to the SPEC clock shift factor. The
theory for converting the PEC clock to the SPEC clock is shown in Appendix B, and the syntax
for outputting the PEC clock state variables is shown in Chapter 6.
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1. INTRODUCTION

The motivation for this reoprt is described in Section 1.1 and an overview of the contents is given
in Section 1.2. The mathematical conventions used in this report are defined in Section 1.3.

1.1. Motivation

At Sandia National Laboratories, many epoxies and other glass-formers are modeled using the
Simplified Potential Energy Clock (SPEC) constitutive model [7], which has been implemented in
LAMÉ [10] as the UNIVERSAL_POLYMER model. Throughout the years, the SPEC model form has
been augmented in a development code known as Spectacular (stylized as SPECTACULAR when
specifically referring to the LAMÉ implementation). Prior to this report, almost no formal
documentation existed for Spectacular. Instead, new developers had to learn about Spectacular by
reading the documentation for UNIVERSAL_POLYMER, then discovering how the two models differ
through discussions with subject matter experts and direct examination of the SPECTACULAR code.
As the differences between SPEC and Spectacular increase, this approach is becoming less
sustainable, as it creates unnecessary barriers for analysts to use the model and for developers to
improve the model. Therefore, the goal of this report is to provide a comprehensive theory
document for the Spectacular constitutive model, thereby preserving knowledge currently held by
only a few Sandia viscoelasticians.

1.2. Overview of material in this report

In Chapter 2, the Spectacular model theory is described in sufficient detail to understand the
model in the context of quasi-static mechanical calculations with a prescribed temperature field,
as one might do in Sierra/SM [11] (also known as Adagio). For engineers and researchers that are
first learning about SPEC or Spectacular, this is a good starting point.1 More advanced material is
presented in Chapters 3 and 4. In Chapter 3, a complete set of constitutive equations for
thermo-mechanical calculations is derived. The derivation starts with the expression for the
Helmholtz free energy, then expressions for the stress and entropy are derived according to the
rational mechanics framework [13]. Chapter 3 also discusses the theory necessary for using
Spectacular in coupled thermo-mechanical simulations with Adagio and Aria. In Chapter 4, the
numerical methods for time-integrating the model are shown, which includes methods for
updating the hereditary integrals and a description of the Newton–Raphson method used to solve
for the shift factor. In Chapter 5, SPECTACULAR is verified under limited conditions. Chapter 5
also demonstrates new model features, and shows how they address previously identified model
form errors. Chapter 6 is a user guide for deploying SPECTACULAR in Sierra/SM calculations. It
describes the syntax used to define the model parameters and describes the state variables
available for output. Future work and prospects for the model are described in Chapter 7.

1However, for those unfamiliar with the integral form of viscoelasticity, Chapter I in Christensen’s book Theory
of Viscoelasticity [12] provides a more didactic introduction to viscoelasticity in general. Also, Chapters III and
VIII in that same text introduce thermo-viscoelasticity and nonlinear viscoelasticity, both of which are useful for
understanding the Spectacular theory.
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This report also contains a handful of appendices covering minor details of the model theory. In
Appendix A, the temperature dependence of the cofficients of thermal expansion is described in
more detail, which requires making the distinction between the tangent coefficients of thermal
expansion (CTE) and the secant coefficients of thermal expansion. The distinction is important
because the user inputs the tangent CTEs, but the model form is described using the secant CTEs.
Appendix B describes the procedure used to simplify the potential energy used in the original
PEC model clock to the state variable N, which is used in the current SPEC and Spectacular
clocks. While this simplification procedure was thoroughly described in the first SPEC paper [7],
the obtuse notation of the PEC model makes it difficult to follow without considerable effort. The
authors hope that the discussion in Appendix B is more easily followed for a casual reading of the
text. Appendix C shows how to apply the Leibniz integral rule to take derivatives of the hereditary
integrals in Spectacular. The Leibniz integral rule may also be referred to as differentiation under
the integral sign. Although the Leibniz rule is not conceptually difficult, it is not always taught in
modern undergraduate calculus courses. By placing the rule in a self-contained appendix, the first
author hopes to point future researchers to more formal citations for the rule than, say, a
Wikipedia article. Finally, Appendices D and E show model parameters used for simulations in
Chapter 5.

1.3. Mathematical conventions

In this report, direct notation for tensors is favored over indicial notation (i.e., summation
conventions for repeated indices). This is because the tensor math in Spectacular is
straightforward, and indices are useful for representing the relaxation functions and their Prony
series, which do not follow the summation convention. First and second rank Cartesian tensors
are represented using bold symbols. For clarity, common tensor operations are defined once here
in terms of indicial notation:(

AAAT
)

i j
= A ji, trAAA = Aii, (AAA ·BBB)i j = AimBm j, AAA : BBB = AmnBmn. (1.1)

An overdot signifies the total time derivative while keeping the material point fixed;

Ȧ =
dA
dt

∣∣∣∣
XXX
, (1.2)

where XXX is the position vector to the material point in the reference configuration. Spatial
derivatives with respect to the reference configuration are written using ∇. For example,

∇θ =
∂θ

∂Xi
êeei, ∇ ·QQQ =

∂Qi

∂Xi
, (1.3)

where êeei is the Cartesian unit vector for component Xi of the reference configuration position
vector XXX . Spatial derivatives with respect to the current configuration are written using text. For
example,

gradθ =
∂θ

∂xi
êeei, divqqq =

∂qi

∂xi
, (1.4)
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where êeei is the Cartesian unit vector for component xi of the current configuration position vector
xxx. The decadic logarithm (base 10) is denoted using log and the natural logarithm is denoted
using ln.
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2. MODEL THEORY

In this chapter, the model theory is presented at a level of detail that is sufficient to (1) describe
the mechanical behavior represented by the model, and (2) connect all model inputs to the model
theory. A more complete description of the thermo-mechanical behavior is shown in Chapter 3.

2.1. Model summary

Spectacular is an isotropic, nonlinear viscoelastic constitutive model for amorphous polymers and
other glass-forming materials. It comes from a family of potential energy clock models, the first
of which was the Potential Energy Clock model, or PEC [5, 6]. The most recent published variant
of the PEC model is the Simplified Potential Energy Clock model, or SPEC [7]. Spectacular is an
extension of SPEC that has gradually evolved over several years as small improvements are
incorporated. The Spectacular model is built from a Helmholtz free energy that is a functional
depending on the histories of strain and temperature. Thermodynamically-consistent stress and
entropy functionals are then derived from the free energy using a Coleman-Noll
procedure [13, 7]. The relaxation processes in the model are based on the material time-scale t∗,
which is related to the laboratory timescale t through a highly nonlinear shift factor a. This shift
factor, sometimes referred to as the material clock, is also a functional that depends on the
histories of strain and temperature. In the original PEC model, the shift factor was a function of
the potential energy, but only essential terms in the shift factor were kept in SPEC, so the shift
factor in SPEC literally depends on a simplified potential energy. The use of the simplified
potential energy for the shift factor is maintained in Spectacular.

2.2. Kinematics

Spectacular uses the integrated unrotated rate of deformation tensor εεε as the strain measure,

εεε =
∫ t

0
ddd ds, DDD = RRR ·ddd ·RRRT, DDD =

1
2

(
LLL+LLLT

)
, FFF = RRR ·UUU , (2.1)

where ddd is the unrotated rate of deformation tensor, DDD is the rate of deformation tensor, LLL is the
velocity gradient, and RRR and UUU are the rotational and right stretch parts of the deformation
gradient, FFF . Although integrating ddd does not actually produce a strain measure, the integrated
unrotated rate of deformation tensor εεε is a good approximation for the Hencky strain HHH [7], i.e.
εεε ≈ HHH in certain cases. The Spectacular model uses the following strain invariants

I1 = trεεε, I2 = tr(εεε · εεε) , I3 = tr(εεε · εεε · εεε) . (2.2)

The deviatoric part of the strain eee is written as

eee = εεε− I1

3
111, (2.3)

where 111 is the second-order identity tensor.
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2.3. Helmholtz free energy

Spectacular postulates a general time-dependent Hemlholtz free energy functional that depends
on the previous histories of strain and temperature,

Ψ(t) =
s=t
P

s=−∞

{
εεε(s),θ(s),a(s);εεε,θ

}
, (2.4)

where Ψ(t) is the Helmholtz free energy at the current time t, εεε(s), θ(s), and a(s) are the histories
of the strain, temperature, and the shift factor as functions of time, and P represents the
Helmholtz free energy functional. The free energy functional also depends on the current values
of temperature and strain, εεε = εεε(t), θ = θ(t).2 The functional notation in Eq. (2.4) implies that the
history of the material extending infinitely backwards in time is required as input. Clearly, such a
requirement is impractical. Instead, some initial time t = 0 is chosen where the material is in an
equilibrium state and therefore past history is irrelevant. In practice, this is almost always
accomplished by choosing t = 0 at some temperature above the material’s glass transition
temperature. When history before t = 0 is neglected, the general form of the functional
becomes

Ψ(t) =
s=t
P

s=0

{
εεε(s),θ(s),a(s);εεε,θ

}
. (2.5)

This general form can be made specific through a Fréchet expansion [14, 15, 13, 16, 4], which is
essentially a Taylor series for functionals [5]. The Helmholtz free energy form used by
Spectacular is obtained by expanding Eq. (2.5) through second order terms [14, 16],

Ψ(t) = Ψ∞ (εεε,θ)+
1
2

KD (εεε,θ)
∫ t

0

∫ t

0
f1 (t∗− s∗, t∗−u∗)

dI1

ds
dI1

du
dsdu

+GD (εεε,θ)
∫ t

0

∫ t

0
f2 (t∗− s∗, t∗−u∗)

deee
ds

:
deee
du

dsdu

−LD (εεε,θ)
∫ t

0

∫ t

0
f3 (t∗− s∗, t∗−u∗)

dI1

ds
dθ

du
dsdu

− CD (θ)

2θref

∫ t

0

∫ t

0
f4 (t∗− s∗, t∗−u∗)

dθ

ds
dθ

du
dsdu.

(2.6)

The “D” subscript denotes a difference between the glassy and rubbery values of a property, with
K and G for the bulk and shear moduli, L for the thermal pressure, and C for the contsant volume

2This notation is not fully rigorous, but has been carefully chosen to capture the main ideas that are of interest
to a constitutive modeler. First of all, it is somewhat redundant to include the current values of εεε(t) and θ(t)
along with their histories. However, this notational choice was made to emphasize that the Helmholtz free energy
has essentially two parts: equilibrium terms that depend on the current values of the state variables {εεε(t),θ(t)}
and non-equilibrium terms that depend on the histories of the state variables {εεε(s), θ(s),a(s)}s=t

s=−∞. Second,
the dependence of the free energy functional on a(s) is implicit; a(s) does not appear in the equation for Ψ(t),
but is needed to transform the material time coordinate t∗ (where the thermodynamics are naturally formulated)
to the laboratory time coordinate t (where the constitutive model must be time-integrated). Despite the implicit
dependence of the free energy functional on a(s), it is included as an argument because the residual functions for
the time-integration scheme are explicit functions of a at the previous and current timesteps (an and an+1).
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heat capacity (these will be described in more detail in 2.4). The equilibrium contribution to the
free energy, Ψ∞ (εεε,θ), depends only on the current strain and temperature. Its expression is

Ψ∞ (εεε,θ) =
1
2

K∞ (εεε,θ) I2
1 +G∞ (εεε,θ)eee : eee−L∞ (εεε,θ)(θ−θsf) I1 −

C∞ (θ)

2θref
(θ−θref)

2 . (2.7)

The “∞” subscript denotes the equilibrium, (i.e., rubbery) value of property. Two fixed
temperatures appear in Eqs. (2.6) and (2.7). The first is the reference temperature θref, which is
the temperature where the shift factor is one under traction-free, equilibrium conditions (the shift
factor will be defined in Section 2.6). The second is the stress-free temperature θsf, which is the
temperature where the thermal strain is defined to be zero under equilibrium and free-expansion
(i.e., traction free) conditions. The stress-free temperature can be chosen, so long as θsf ≥ θref.
Typically, the model should be initialized at the stress-free temperature; θ(0) = θsf.

The non-equilibrium (or memory) contributions to the free energy arise from the four convolution
integrals in Eq. (2.6), each of which has its own kernel denoted as fr(x,y), with r ∈ {1, 2, 3, 4}.
These kernels are referred to as relaxation functions and are respectively called the volumetric or
bulk relaxation function ( f1), the shear relaxation function ( f2), the thermal-volumetric or thermal
strain relaxation function ( f3), and the thermal relaxation function ( f4). To maintain coherence
with physical observations, the relaxation functions must obey four constraints: (1) they must be
symmetric with respect to their arguments, (2) they must equal one in the unrelaxed state, (3) they
must limit to zero in the relaxed state, and (4) they must decrease monotonically from one to zero.
In mathematical terms,

fr(x,y) = fr(y,x), (2.8)
fr(0,0) = 1, (2.9)

lim
x→∞

fr(x,y) = lim
y→∞

fr(x,y) = 0, (2.10)

∂ fr

∂x
≤ 0. (2.11)

Because the arguments of the relaxation functions are symmetric, it is often convenient to use a
shorthand where a zero argument is suppressed;

fr(x) := fr(x,0) = fr(0,x). (2.12)

The time arguments for the relaxation functions in Eq. (2.6) are marked with a superscript “∗”.
This indicates that relaxation occurs on the material time scale, which is shifted from the
laboratory timescale by the material clock. The shifted time will be defined later with the
discussion of the material clock in Section 2.6.

The remaining terms in Eqs. (2.6) and (2.7) will be described in Section 2.4.

2.4. Equilibrium and instantaneous viscoelastic limits

Four types of functions related to the instantaneous (i.e., glassy) and equilibrium (i.e., rubbery)
limiting responses appear in Eqs. (2.6) and (2.7). These four functions are related to the bulk
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modulus K, the shear modulus G, the (secant) volumetric coefficient of thermal expansion (CTE)
δ, and the constant volume heat capacity (per reference volume) C. The instantaneous and
equilibrium limits are marked with subscripts “g” and “∞”, respectively. All of these functions are
allowed up to a linear dependence on temperature and they depend on the strain through a linear
relationship with the three strain invariants defined in Eq. (2.2). The instantaneous limits are
defined as

Kg (εεε,θ) = Kref
g +Kθ

g (θ−θref)+KI1
g I1 +KI2

g I2 +KI3
g I3, (2.13)

Gg (εεε,θ) = Gref
g +Gθ

g (θ−θref)+GI1
g I1 +GI2

g I2 +GI3
g I3, (2.14)

δg (θ) = δ
ref
g +δ

θ
g (θ−θref) , (2.15)

Cg (θ) =Cref
g +Cθ

g (θ−θref) , (2.16)

where each coefficient is a model input and constant terms with a superscript “ref” indicate the
value of that limiting response at temperature θref and zero strain. The same forms are used for
the equilibrium limits;

K∞ (εεε,θ) = Kref
∞ +Kθ

∞ (θ−θref)+KI1
∞ I1 +KI2

∞ I2 +KI3
∞ I3, (2.17)

G∞ (εεε,θ) = Gref
∞ +Gθ

∞ (θ−θref)+GI1
∞I1 +GI2

∞I2 +GI3
∞I3, (2.18)

δ∞ (θ) = δ
ref
∞ +δ

θ
∞ (θ−θref) , (2.19)

C∞ (θ) =Cref
∞ +Cθ

∞ (θ−θref) . (2.20)

The CTE functions enter into Eqs. (2.6) and (2.7) as products with the bulk moduli functions,
called the thermal pressure,

Lg (εεε,θ) = Kg (εεε,θ)δg (θ) , L∞ (εεε,θ) = K∞ (εεε,θ)δ∞ (θ) . (2.21)

Predictably, the equilibrium responses appear in the expression for the equilibrium free energy,
Eq. (2.7). The difference between the instantaneous and equilibrium limit for each function is
denoted with a subscript “D”,

KD (εεε,θ) = Kg (εεε,θ)−K∞ (εεε,θ) , GD (εεε,θ) = Gg (εεε,θ)−G∞ (εεε,θ) , (2.22)
LD (εεε,θ) = Lg (εεε,θ)−L∞ (εεε,θ) , CD (θ) =Cg (θ)−C∞ (θ) . (2.23)

These differences appear as coefficients to the hereditary integrals in Eq. (2.6).

Derivatives of these viscoelastic limits with respect to strain will appear later in the equation for
the stress. The derivatives of the equilibrium functions with respect to strain are

∂K∞

∂εεε
= KI1

∞ 111+2KI2
∞ εεε+3KI3

∞ εεε · εεε, (2.24)

∂G∞

∂εεε
= GI1

∞111+2GI2
∞εεε+3GI3

∞εεε · εεε, (2.25)

∂L∞

∂εεε
=
(
KI1

∞ 111+2KI2
∞ εεε+3KI3

∞ εεε · εεε
)

δ∞ (θ) , (2.26)

∂C∞

∂εεε
= 0. (2.27)
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Derivatives of the instantaneous limits follow the same form. Derivatives of the viscoelastic limits
with respect to temperature will appear in the entropy equation and equations for
thermo-mechanical coupling, presented in Chapter 3. The derivatives of the equilibrium functions
with respect to temperature are

∂K∞

∂θ
= Kθ

∞,
∂G∞

∂θ
= Gθ

∞,
∂C∞

∂θ
=Cθ

∞, (2.28)

∂L∞

∂θ
= Kθ

∞δ∞ (θ)+K∞ (εεε,θ)δ
θ
∞, (2.29)

∂2L∞

∂εεε∂θ
=
(
KI1

∞ 111+2KI2
∞ εεε+3KI3

∞ εεε · εεε
)

δ
θ
∞, (2.30)

∂2L∞

∂θ2 = 2Kθ
∞δ

θ
∞. (2.31)

Derivatives of the instantaneous functions follow the same form.

The Spectacular model equations use the secant CTE δ, but the tangent CTE α is more commonly
measured in experiments. To clarify, the secant and tangent CTE are defined under free expansion
conditions as

δ(θ) :=
I1

θ−θsf
, α(θ) :=

dI1

dθ
. (2.32)

The model inputs used to define the thermal expansion behavior actually define the tangent CTE,
which is also allowed to depend linearly on temperature;

αg (θ) = α
ref
g +α

θ
g (θ−θref) , α∞ (θ) = α

ref
∞ +α

θ
∞ (θ−θref) . (2.33)

Internally, the model converts the tangent CTE to a secant CTE using the following:

δ
ref
g = α

ref
g +

1
2

α
θ
g (θsf −θref) , δ

ref
∞ = α

ref
∞ +

1
2

α
θ
∞ (θsf −θref) , (2.34)

δ
θ
g =

1
2

α
θ
g, δ

θ
∞ =

1
2

α
θ
∞. (2.35)

The derivation for Eqs. (2.34) and (2.35) is shown in Appendix A.

2.5. Stress

Using a standard Colemann-Noll procedure [13, 7], the stress tensor ΣΣΣ, which is the stress
measure that is work-conjugate to ddd, is derived in terms of the Helmholtz free energy as

ΣΣΣ(t) =
∂Ψ

∂εεε
. (2.36)
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For implementation into a finite element code, ΣΣΣ is either converted to the unrotated Cauchy stress
TTT or the Cauchy stress σσσ, depending on the specific finite element code. To convert between the
different stress tensors, one can use

TTT =
ρ

ρ0
ΣΣΣ =

ΣΣΣ

detFFF
, σσσ = RRR ·TTT ·RRRT. (2.37)

The stress ΣΣΣ can also be thought of as a functional, expressed as

ΣΣΣ(t) =
s=t
S

s=0

{
εεε(s),θ(s),a(s);εεε,θ

}
, (2.38)

ΣΣΣ(t) = ΣΣΣ∞ (εεε,θ)+KD (εεε,θ)111
∫ t

0
f1 (t∗− s∗)

dI1

ds
ds

+2GD (εεε,θ)
∫ t

0
f2 (t∗− s∗)

deee
ds

ds

−LD (εεε,θ)111
∫ t

0
f3 (t∗− s∗)

dθ

ds
ds

+
1
2

∂KD

∂εεε

∫ t

0

∫ t

0
f1 (t∗− s∗, t∗−u∗)

dI1

ds
dI1

du
dsdu

+
∂GD

∂εεε

∫ t

0

∫ t

0
f2 (t∗− s∗, t∗−u∗)

deee
ds

:
deee
du

dsdu

− ∂LD

∂εεε

∫ t

0

∫ t

0
f3 (t∗− s∗, t∗−u∗)

dI1

ds
dθ

du
dsdu,

(2.39)

with the equilibrium contribution to the stress ΣΣΣ∞ being

ΣΣΣ∞ (εεε,θ) = K∞ (εεε,θ) I1111+2G∞ (εεε,θ)eee−L∞ (εεε,θ)(θ−θsf)111

+
1
2

∂K∞

∂εεε
I2
1 +

∂G∞

∂εεε
eee : eee− ∂L∞

∂εεε
I1 (θ−θsf) .

(2.40)

When the viscoelastic limits are taken as constants, Eqs. (2.39) and (2.40) simplify to a form that
is more common in viscoelasticity and more intuitive:

ΣΣΣ(t) =
{

K∞ (I1 −δ∞ (θ−θsf))+KD

∫ t

0
f1 (t∗− s∗)

dI1

ds
ds−LD

∫ t

0
f3 (t∗− s∗)

dθ

ds
ds
}

111

+2G∞eee+2GD

∫ t

0
f2 (t∗− s∗)

deee
ds

ds.
(2.41)

2.6. Clock definition

The shift factor a relates the laboratory timescale dt to the material timescale dt∗. A difference in
material time t∗− s∗ is related to a difference in the laboratory time t − s by

adt∗ = dt, t∗− s∗ =
∫ t

s

du
a(u)

. (2.42)
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Figure 2-1 The WLF equation, the Arrhenius equation, and the piecewise shift factor function used by Spectac-
ular, Eq. (2.43). C1 = 10, C2 = 50K, θref = 100 ◦C, Nmatch = 85 ◦C, A2 = 20000K. A1 is calculated according to
Eq. (2.44) to ensure the two pieces of the function join at Nmatch.

The shift factor a is defined through a piecewise function that depends on the state variable N(t),
which has units of temperature. The shift factor function has a Williams-Landel-Ferry (WLF)
form [17] for N ≥ Nmatch and an Arrhenius form [18] for N < Nmatch,

loga(N(t)) =


−C1 (N −θref)

C2 +N −θref
, N ≥ Nmatch,

A1 +
A2

N
, N < Nmatch.

(2.43)

The shift factor function loga(N) is fully defined from the parameters θref, C1, C2, A2, and Nmatch.
The parameter A1 is not independent to ensure continuity between the two pieces at Nmatch,

A1 =− A2

Nmatch
− C1 (Nmatch −θref)

C2 +Nmatch −θref
. (2.44)

Though continuous at Nmatch, the shift factor function is not smooth at Nmatch. The shift factor as a
function of N (Eq. (2.43)) is plotted in Fig. 2-1.

In the original PEC model, the shift factor a was driven by the potential energy [5, 6]. The SPEC
model used a simplified potential energy [7] that only kept essential terms, see Appendix B for
details of the simplification procedure. To accommodate the severe reduction in terms, the
coefficients to these essential terms were made into free parameters in Spectacular, where
previously in SPEC they depended on the viscoelastic limits. The expression for the simplified
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potential energy N is then

N (t) =
s=t
N

s=0

{
εεε(s),θ(s),a(s);εεε,θ

}
, (2.45)

N (t) = θ−C0

∫ t

0
fT (t∗− s∗)

dθ

ds
ds

+C3

(
I1 − I1,ref −

∫ t

0
fV (t∗− s∗)

dI1

ds
ds
)

+C4

∫ t

0

∫ t

0
f2 (t∗− s∗, t∗−u∗)

deee
ds

:
deee
du

dsdu,

V ∈ {1, 3} ,
T ∈ {3, 4} ,

(2.46)

where C0, C3, C4 are clock parameters, and V and T are indices chosen by the user. The effect of
volume strain on the shift factor is adjusted with C3, where a compressive volume strain will slow
relaxation processes. This parameter allows the glass transition to change with pressure. The
effect of shear strain on this shift factor is controlled through C4, where any shear strain speeds-up
relaxation processes. This parameter allows for yield under both tension and compression. In
SPEC, the thermal hereditary integral had a coefficient of one, C0 = 1. In Spectacular, this
coefficient is made into the parameter C0 to enable developers to deactivate the influence of the
temperature history on the shift factor. While this is useful for verification exercises and
debugging, C0 = 1 should always be used when modeling real materials. The indices V and T
allow the user to determine which relaxation functions appear in the volume and thermal
convolution integrals respectively. These choices are allowed for backwards compatibility with
older versions of Spectacular, but V = 3 and T = 4 are the choices consistent with the original
terms carried forward from PEC. In order to keep the equilibrium shift factor equal to one at θref,
the volume strain in Eq. (2.46) is offset by the volume strain that would occur under free
expansion after cooling from θsf to θref,

I1,ref = δ
ref
∞ (θref −θsf) . (2.47)

Although N may be referred to as the “simplified potential energy”, N has units of temperature, so
it may be more intuitive to refer to it as the “clock temperature”. In SPEC, N included a θ−θref
term, but the θref term was removed to make N more like an absolute temperature. It is worth
noting that N is also a functional that depends on the histories of strain, temperature, and the shift
factor. Because N depends on the shift factor and the shift factor depends on N, Eq. (2.46) is an
implicit equation. The primary challenge of numerically integrating the Spectacular model is
simultaneously solving Eqs. (2.43) and (2.46).

The parameters C1, C2, Nmatch, and A2 in Eq. (2.43) are not typically determined experimentally.
Instead, it is more common in the literature to report the equilibrium shift factor as a function of
temperature. Therefore, the model accepts parameters that define the equilibrium shift factor
under free expansion as a function of temperature and then converts those parameters into the
those used in Eq. (2.43). Assuming the equilibrium shift factor as a function of temperature
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follows a similar form to Eq. (2.43), then

log â∞ (θ) =


− Ĉ1 (θ−θref)

Ĉ2 +θ−θref
, θ ≥ θmatch,

log
[

â0 exp
(

Ea

Rθ

)]
, θ < θmatch.

(2.48)

where Ĉ1 and Ĉ2 are the WLF coefficients [17], Ea is the activation energy, R is the gas constant,
â0 is the shift factor at Ea/(Rθ) = 1, and θmatch is the temperature where the function switches
from WLF to Arrhenius. The subscript ∞ on â∞ is used to emphasize that this function is for the
equilibrium shift factor, i.e., when all memory terms are zero. When defining the shift factor as a
function of temperature, Ĉ1, Ĉ2, θmatch, and Ea/R are input instead of C1, C2, Nmatch, and A2. Like
A1, the parameter â0 is dependent to ensure continuity at θmatch. Under equilibrium conditions, all
memory integrals in Eq. (2.46) are zero. Under free expansion, I1 = δ∞ (θ)(θ−θsf). Therefore,
the equilibrium clock temperature under free expansion depends only on the temperature,

N∞(θ) = θ+C3
[
δ∞ (θ)(θ−θsf)− I1,ref

]
. (2.49)

Thus, the equilibrium shift factor as a function of N can be written as

loga∞(θ) = loga(N∞(θ)) =


−C1 (N∞ −θref)

C2 +N∞ −θref
, N∞ ≥ Nmatch,

A1 +
A2

N∞

, N∞ < Nmatch.

(2.50)

The conversion from log â∞(θ) in Eq. (2.48) to loga(N∞(θ)) Eq. (2.50) is only approximate.
When the temperature dependence of α∞ (θ) is neglected, the WLF parameters Ĉ1 and Ĉ2 are
easily converted to C1 and C2 through algebraic manipulations of Eqs. (2.48) and (2.50):

C1 = Ĉ1 (2.51)

C2 = Ĉ2

(
1+C3α

ref
∞

)
. (2.52)

When αθ
∞ is small (it usually is), the difference between the WLF parts of Eqs. (2.48) and (2.50)

is insignificant. To convert θmatch to Nmatch, simply evaluate Eq. (2.49) at θmatch:

Nmatch = θmatch +C3
(
δ∞ (θmatch)(θmatch −θsf)− I1,ref

)
. (2.53)

To convert Ea/R to A2, set the slopes of the Arrhenius parts of Eqs. (2.48) and (2.50) equal at
θmatch,

∂ log â
∂θ

∣∣∣∣
θ
−
match

=
∂ loga

∂θ

∣∣∣∣
θ
−
match

, (2.54)

which gives the following equation for calculating A2:

A2 =

(
Ea

R ln10

)
N2

match

θ2
match

(
1+C3

[
δref

∞ +δθ
∞ (2θmatch −θref −θsf)

]) . (2.55)

This conversion is only exact when C3 = 0, which is to say, it is almost never exact.
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2.7. Specification of the relaxation functions

Requirements on the form of the relaxation functions were given in Eqs. (2.8) to (2.11), but the
Spectacular model cannot practically accept any general function satisfying these requirements.
To make the numerical integration of the hereditary integrals more tractable, a Prony series [19] is
chosen as the form for the relaxation functions,

fr(x,y) =
Pr

∑
p=1

wrp exp
(
− x

τrp

)
exp
(
− y

τrp

)
, (2.56)

where τrp and wrp are the p-th Prony time and weight, respectively, in the relaxation function r
with Pr number of Prony terms. In order to satisfy the requirements in Eqs. (2.9) and (2.11), the
weights must all be positive and sum to one and the characteristic times must be positive;

Pr

∑
p=1

wrp = 1, wrp ≥ 0, τrp > 0. (2.57)

It is common to report the relaxation functions as stretched exponentials [20] instead of as a
Prony series. A stretched exponential has the form

fr(x,0) = fr(x) = exp

[
−
(

x
τr

)βr
]
, 0 < βr ≤ 1, (2.58)

where τr and βr are the characteristic time and breadth for relaxation function r. Stretched
exponential functions are also sometimes referred to as Kohlrausch-Williams-Watts (KWW)
functions [21, 22, 20]. The model does not accept τr or βr as inputs to define the relaxation
functions, but it is convenient to discuss relaxation functions using stretched exponential fits
because they use only two parameters instead of the 2Pr parameters associated with a Prony
series. When this report discusses relaxation functions using stretched exponentials, it can be
assumed that a Prony series was fit to the stretched exponential and that Prony series was input
into the model to define the relaxation function.

26



3. THERMO-MECHANICAL COUPLING

3.1. Introduction

Spectacular is a full thermodynamic equation of state, and, as such, it is suitable for coupled
thermo-mechanial calculations. A full thermo-mechanical theory is especially important for
predicting physical aging, where deformation and viscoelastic relaxation may lead to small, but
important, temperature changes. Furthermore, physical aging predictions are highly sensitive to
the choice of f4, which can be determined by fitting the heat capacity predicted by the
thermo-mechanical theory to measurements from differential scanning calorimetry (DSC).

This chapter describes the Spectacular theory for the case when, in addition to the deformation,
the temperature is a degree of freedom. Two goals must be achieved to add temperature as a
degree of freedom. First, a full set of thermodynamic constitutive equations must be developed to
close the system of equations that define a thermodynamic process. Second, the energy balance
equation must be cast in the form of a partial differential equation that can be numerically solved
for the temperature field. The outline of this chapter is as follows. Preliminaries are addressed in
Section 3.2, which gives a mathematical definition for a thermodynamic process and identifies the
four constitutive equations necessary to close the system of equations describing a thermodynamic
process. Section 3.3 describes the development of thermodynamically consistent constitutive
equations for materials with memory that relax on a material timescale [13, 16]. In Section 3.3.1
the theory is developed in general terms, and then is applied to the Spectacular model in
Section 3.3.2. A general heat equation for the Spectacular model is derived in Section 3.4.
Finally, Section 3.5 shows how to calculate the instantaneous heat capacity from Spectacular
model state variables. This text of this chapter draws extensively from Refs. [13, 9].

For convenient referencing, certain fundamental equations are given special labels. The
conservation of linear momentum is labelled as Eq. (P). The first and second laws of
thermodynamics are labelled as Eqs. (I) and (II). The heat equation is labelled as Eq. (H).

3.2. Definition of a thermodynamic process

A thermodynamic process for a continuum body is described by eight functions of XXX and t, where
XXX is the position vector for the material points in the reference configuration and t is the time. The
eight functions that make up a thermodynamic process are as follows [13]

1. The position vector for the material points in the current configuration, xxx = xxx(XXX , t). For a
solid mechanics constitutive model it is often more convenient to track the deformation of
material points using the strain, which is easily calculated for a given xxx(XXX , t). Specifically,
Spectacular uses the integrated unrotated rate of deformation tensor εεε = εεε(XXX , t), see
Eq. (2.1).

2. The internal body forces, quantified by the stress tensor ΣΣΣ = ΣΣΣ(XXX , t), where ΣΣΣ is the stress
conjugate to εεε. Equally valid choices are the Cauchy stress tensor σσσ and the first
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Piola-Kirchhoff stress tensor PPP = Jσσσ
(
FFF−1)T, where J = detFFF = ρ0/ρ. The Cauchy stress

can be calculated from ΣΣΣ using Eq. (2.37).

3. The body force bbb = bbb(XXX , t).

4. The entropy η = η(XXX , t).

5. The absolute temperature θ = θ(XXX , t).

6. The thermodynamic potential, commonly described using the internal energy E = E (XXX , t).
For Spectacular, it will be more convenient to use the Helmholtz free energy Ψ = Ψ(XXX , t),
where Ψ = E −θη. Another valid thermodynamic potential is the enthalpy χ = χ(XXX , t),
where χ = E −PPP : FFF .

7. The referential heat flux vector QQQ = QQQ(XXX , t), or alternatively, the spatial heat flux vector
qqq = (1/J)FFF ·QQQ.

8. The heat source r = r (XXX , t).

All intrinsic thermodynamic properties (η, E, Ψ) and distributed quantities (bbb, r) are defined per
unit volume in the reference configuration with volume V0 and density ρ0. It is assumed that
bbb(XXX , t) and r (XXX , t) are known (in a finite element analysis, they are usually specified by the user).
Therefore, six unknown field variables remain to be determined.

A thermodynamic process is restricted by the conservation of linear momentum and the first law
of thermodynamics. The conservation of linear momentum in terms of the Piola-Kirchhoff stress
tensor is

∇ ·PPP+bbb = ρ0ẍxx, (P)

where an overdot signifies the material time derivative (i.e., XXX is fixed), and ∇ · () signifies the
divergence with respect to the reference configuration (i.e., ∇ ·PPP = (∂Pi j/∂X j)êeei). The first law of
thermodynamics (conservation of energy) in the reference configuration is

Ė −ΣΣΣ : ε̇εε+∇ ·QQQ− r = 0, (I)

where, once again, ∇ · () signifies the divergence with respect to the reference configuration (i.e.,
∇ ·QQQ = ∂Qi/∂Xi). In summary there are six unknown field variables (εεε, ΣΣΣ, η, Ψ, θ, QQQ) and two
equations (Eqs. (P) and (I)). Therefore, four constitutive equations are needed to close the system
of field equations defining a thermodynamic process. The four constitutive equations
mathematically define the material. For a material with memory that relaxes on a material time
scale [16], one possible set of constitutive equations is [9, 13]

Ψ = Ψ(t) =
s=t
P

s=0

{
εεε(s),θ(s),a(s);εεε(t),θ(t)

}
, (3.1)

ΣΣΣ = ΣΣΣ(t) =
s=t
S

s=0

{
εεε(s),θ(s),a(s);εεε(t),θ(t)

}
, (3.2)

η = η(t) =
s=t
n

s=0

{
εεε(s),θ(s),a(s);εεε(t),θ(t)

}
, (3.3)

QQQ = QQQ(CCC,θ,∇θ), (3.4)
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where CCC = FFFT ·FFF is the right Cauchy-Green tensor and a(s) is the history of the shift factor that
defines the material time, see Eq. (2.42). One goal of this chapter is to develop the constitutive
equations listed in Eqs. (3.1) to (3.4). The Fraktur symbols in Eqs. (3.1) to (3.3) denote
functionals. For materials with memory that relax on a material timescale, the constitutive
functionals depend on the strain history, temperature history, and the shift factor history [13, 16].3

The constitutive functionals also take the current time t as a parameter argument (both to
determine the current strain and temperature and to set the upper bound for the history included in
the functional arguments), therefore they map the state variable histories onto a function of
time.4

It is also useful to develop the following auxiliary constitutive equations

E = E(t) =
s=t
E

s=0

{
εεε(s),θ(s),a(s);εεε(t),θ(t)

}
, (3.5)

χ = χ(t) =
s=t
X

s=0

{
εεε(s),θ(s),a(s);εεε(t),θ(t)

}
. (3.6)

Functional forms for Eqs. (3.5) and (3.6) are not required since they E and χ can be calculated
directly once all eight field variables making up a thermodynamic process have been
determined.

A thermodynamic process must also obey the second law of thermodynamics. In the reference
configuration, the second law is

ΣΣΣ : ε̇εε+θη̇− Ė − 1
θ

QQQ ·∇θ = D ≥ 0, (II)

where D is the dissipation density (per unit volume in the reference configuration). In the next
section, as we develop the constitutive equations listed in Eqs. (3.1) to (3.4), it will be shown that
Eq. (II) places restrictions on the form of the constitutive equations.

3.3. Thermodynamically consistent constitutive equations for materials with memory
that relax on a material timescale

In this section, we develop constitutive equations for materials with memory that relax on a
material timescale, subject to the restrictions imposed by the second law of thermodynamics,
Eq. (II). Four constitutive relations need to be defined to close the system of equations that define
a thermodynamic process, see Eqs. (3.1) to (3.4). First, the general theory will be developed in
Section 3.3.1. The results from the general theory are then applied to develop specific constitutive

3These are not the most general set of dependencies possible; we are starting pragmatically from the (well justified)
dependencies already adopted in the Spectacular model implementation. For example, it is a well-known result
of continuum thermodynamics that the state functions (i.e., Ψ,ΣΣΣ,η,E,χ) cannot depend on the temperature gra-
dient [13], which has already been taken into account in Eqs. (3.1) to (3.3). See Ref. [13] for a derivation of the
constitutive equations that starts from the theory of equipresence.

4Rigorously, Eqs. (3.1) to (3.4) are also functions of position XXX . However, constitutive models are typically concerned
with solving equations in the time domain while the spatial domain is left to the finite element code. Therefore,
the argument XXX is suppressed in the theory presented here.
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equations for the Spectacular model in Section 3.3.2. Auxiliary constitutive equations for the
internal energy and enthalpy according to Eqs. (3.5) and (3.6) are briefly discussed in
Section 3.3.3.

The theory presented here sacrifices mathematical rigor in order to provide more intuitive
explanations. Specifically, discussions of functionals and functional derivatives are omitted,
although such mathematical objects are foundational for the integral form of viscoelasticity [15].
More rigorous treatments on the subject can be found in Refs. [13, 16].

3.3.1. General theory

Let us now deduce the restrictions placed on the constitutive equations by the second law of
thermodynamics. Rewriting Eq. (II) in terms of the Helmholtz free energy produces

ΣΣΣ : ε̇εε− Ψ̇−ηθ̇− 1
θ

QQQ ·∇θ = D ≥ 0. (3.7)

The the material time derivative for the free energy is

Ψ̇ =
∂Ψ

∂εεε
: ε̇εε+

∂Ψ

∂θ
θ̇+

∂Ψ

∂t
. (3.8)

Plugging Eq. (3.8) into Eq. (3.7), the expression for the second law becomes(
ΣΣΣ− ∂Ψ

∂εεε

)
: ε̇εε+

(
−η− ∂Ψ

∂θ

)
θ̇+

∂Ψ

∂t
− 1

θ
QQQ ·∇θ = D ≥ 0. (3.9)

In order to satisfy the inequality in Eq. (3.9) for an arbitrary thermo-mechanical path, the terms
gathered within the parentheses must vanish. Consequently, the constitutive relations for the
stress and entropy must be

ΣΣΣ =
∂Ψ

∂εεε
, (3.10)

η =−∂Ψ

∂θ
. (3.11)

Now, the dissipation inequality reduces to

DTM − 1
θ

QQQ ·∇θ = D ≥ 0, (3.12)

where

DTM :=
∂Ψ

∂t
. (3.13)

The quantity DTM is now seen to represent the dissipation due to thermo-mechanical effects (that
is, the dissipation excluding that which is due to heat flow). The inequality requires DTM ≥ 0,
which places restrictions on the form of the relaxation functions; these requirements are discussed
elsewhere, see the original PEC/SPEC papers [5, 6, 7] and the book Theory of Viscoelasticity by
Christensen [12] (the restrictions are hinted at in Eqs. (2.10) and (2.11)). Satisfaction of the
inequality DTM ≥ 0 also requires that the shift factor is always greater than zero; a > 0 [16].
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3.3.2. Constitutive equations for the Spectacular model

According to Eqs. (3.10) and (3.11), equations for the stress and entropy follow from the
Helmholtz free energy. Accordingly, only two independent closure relations need specification;
the free energy Ψ and the heat flux QQQ. In this section, equations for Ψ and QQQ are prescribed for
Spectacular, and equations for the stress and entropy are derived.

Helmholtz free energy, stress, and entropy. The Spectacular Helmholtz free energy begins
with a power series expansion for functionals [14, 16], sometimes referred to as a Fréchet
expansion [5]. The steps for performing the expansion are omitted here, but details can be found
in Refs. [14, 16, 5, 4]. The Helmholtz free energy for the Spectacular model uses a Fréchet
expansion through second-order terms and its expression is5

Ψ(t) = Ψ∞ (εεε,θ)+
1
2

KD (εεε,θ)
∫ t

0

∫ t

0
f1 (t∗− s∗, t∗−u∗)

dI1

ds
dI1

du
dsdu

+GD (εεε,θ)
∫ t

0

∫ t

0
f2 (t∗− s∗, t∗−u∗)

deee
ds

:
deee
du

dsdu

−LD (εεε,θ)
∫ t

0

∫ t

0
f3 (t∗− s∗, t∗−u∗)

dI1

ds
dθ

du
dsdu

− CD (θ)

2θref

∫ t

0

∫ t

0
f4 (t∗− s∗, t∗−u∗)

dθ

ds
dθ

du
dsdu.

(3.14)

The equilibrium terms in the Helmholtz free energy are a Taylor expansion in strain and
temperature through second-order terms;

Ψ∞ (εεε,θ) =
1
2

K∞ (εεε,θ) I2
1 +G∞ (εεε,θ)eee : eee−L∞ (εεε,θ)(θ−θsf) I1 −

C∞ (θ)

2θref
(θ−θref)

2 . (3.15)

First-order terms in Eqs. (3.14) and (3.15) vanish to ensure that the Helmholtz free energy is
minimized in the equilibrium state, which is also a consequence of Eq. (II).

According to Eqs. (3.10) and (3.11), the stress is the derivative of the free energy with respect to
strain and the entropy is the derivative of the Helmholtz free energy with respect to temperature.
Perhaps the most straightforward method for evaluating the partial derivatives of Eq. (3.14) is to
take its material time derivative and then group terms;

Ψ̇ =
∂Ψ

∂εεε
: ε̇εε+

∂Ψ

∂θ
θ̇+

∂Ψ

∂t
, (3.16)

5Eqs. (3.14) and (3.15) are identical to Eqs. (2.6) and (2.7), but are repeated here for convenience.
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where
∂Ψ

∂εεε
=

∂Ψ∞

∂εεε
+KD (εεε,θ)111

∫ t

0
f1 (t∗− s∗)

dI1

ds
ds+2GD (εεε,θ)

∫ t

0
f2 (t∗− s∗)

deee
ds

ds

−LD (εεε,θ)111
∫ t

0
f3 (t∗− s∗)

dθ

ds
ds

+
1
2

∂KD

∂εεε

∫ t

0

∫ t

0
f1 (t∗− s∗, t∗−u∗)

dI1

ds
dI1

du
dsdu

+
∂GD

∂εεε

∫ t

0

∫ t

0
f2 (t∗− s∗, t∗−u∗)

deee
ds

:
deee
du

dsdu

− ∂LD

∂εεε

∫ t

0

∫ t

0
f3 (t∗− s∗, t∗−u∗)

dI1

ds
dθ

du
dsdu,

(3.17)

∂Ψ

∂θ
=

∂Ψ∞

∂θ
−LD (εεε,θ)

∫ t

0
f3 (t∗− s∗)

dI1

ds
ds− CD (θ)

θref

∫ t

0
f4 (t∗− s∗)

dθ

ds
ds

+
1
2

Kθ
D

∫ t

0

∫ t

0
f1 (t∗− s∗, t∗−u∗)

dI1

ds
dI1

du
dsdu

+Gθ
D

∫ t

0

∫ t

0
f2 (t∗− s∗, t∗−u∗)

deee
ds

:
deee
du

dsdu

− ∂LD

∂θ

∫ t

0

∫ t

0
f3 (t∗− s∗, t∗−u∗)

dI1

ds
dθ

du
dsdu

−
Cθ

D
2θref

∫ t

0

∫ t

0
f4 (t∗− s∗, t∗−u∗)

dθ

ds
dθ

du
dsdu,

(3.18)

and
∂Ψ

∂t
= DTM =−1

2
KD (εεε,θ)

∫ t

0

∫ t

0

∂ f1 (t∗− s∗, t∗−u∗)
∂t

dI1

ds
dI1

du
dsdu

−GD (εεε,θ)
∫ t

0

∫ t

0

∂ f2 (t∗− s∗, t∗−u∗)
∂t

deee
ds

:
deee
du

dsdu

+LD (εεε,θ)
∫ t

0

∫ t

0

∂ f3 (t∗− s∗, t∗−u∗)
∂t

dI1

ds
dθ

du
dsdu

+
CD (θ)

2θref

∫ t

0

∫ t

0

∂ f4 (t∗− s∗, t∗−u∗)
∂t

dθ

ds
dθ

du
dsdu.

(3.19)

According to Eq. (3.10),

ΣΣΣ(t) =
∂Ψ

∂εεε
= ΣΣΣ∞ (εεε,θ)+KD (εεε,θ)111

∫ t

0
f1 (t∗− s∗)

dI1

ds
ds+2GD (εεε,θ)

∫ t

0
f2 (t∗− s∗)

deee
ds

ds

−LD (εεε,θ)111
∫ t

0
f3 (t∗− s∗)

dθ

ds
ds

+
1
2

∂KD

∂εεε

∫ t

0

∫ t

0
f1 (t∗− s∗, t∗−u∗)

dI1

ds
dI1

du
dsdu

+
∂GD

∂εεε

∫ t

0

∫ t

0
f2 (t∗− s∗, t∗−u∗)

deee
ds

:
deee
du

dsdu

− ∂LD

∂εεε

∫ t

0

∫ t

0
f3 (t∗− s∗, t∗−u∗)

dI1

ds
dθ

du
dsdu,

(3.20)
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ΣΣΣ∞ (εεε,θ) =
∂Ψ∞

∂εεε
= K∞ (εεε,θ) I1111+2G∞ (εεε,θ)eee−L∞ (εεε,θ)(θ−θsf)111

+
1
2

∂K∞

∂εεε
I2
1 +

∂G∞

∂εεε
eee : eee− ∂L∞

∂εεε
I1 (θ−θsf) .

(3.21)

According to Eq. (3.11),

η(t) =−∂Ψ

∂θ
= η∞ (εεε,θ)+LD (εεε,θ)

∫ t

0
f3 (t∗− s∗)

dI1

ds
ds+

CD (θ)

θref

∫ t

0
f4 (t∗− s∗)

dθ

ds
ds

− 1
2

Kθ
D

∫ t

0

∫ t

0
f1 (t∗− s∗, t∗−u∗)

dI1

ds
dI1

du
dsdu

−Gθ
D

∫ t

0

∫ t

0
f2 (t∗− s∗, t∗−u∗)

deee
ds

:
deee
du

dsdu

+
∂LD

∂θ

∫ t

0

∫ t

0
f3 (t∗− s∗, t∗−u∗)

dI1

ds
dθ

du
dsdu

+
Cθ

D
2θref

∫ t

0

∫ t

0
f4 (t∗− s∗, t∗−u∗)

dθ

ds
dθ

du
dsdu,

(3.22)

η∞ (εεε,θ) =−∂Ψ∞

∂θ
= L∞ (εεε,θ) I1 +

C∞ (θ)

θref
(θ−θref)−

1
2

Kθ
∞I2

1 −Gθ
∞eee : eee

+
∂L∞

∂θ
I1 (θ−θsf)+

Cθ
∞

2θref
(θ−θref)

2 .

(3.23)

Heat flux. An equation must be prescribed for the heat flux. Consistent with the assumption of
isotropic mechanical behavior, we assume that heat conduction is likewise isotropic. The simplest
choice that satisfies the entropy production inequality is Fourier’s law,

qqq =−k(θ)gradθ, (3.24)

where grad() is the gradient with respect to the current configuration (gradθ = (∂θ/∂xi)êeei) and qqq
is the spatial heat flux vector. The referential heat flux vector is related to its spatial counterpart
through QQQ = JFFF−1 ·qqq. Hence, expressed in reference configuration quantities, Fourier’s law
becomes

QQQ(CCC,θ,∇θ) =−Jk(θ)CCC−1 ·∇θ, (3.25)

where CCC is the right Cauchy-Green tensor. With this choice, the heat conduction part of the
dissipation inequality becomes

−1
θ

QQQ ·∇θ =
Jk(θ)

θ

(
∇θ ·CCC−1 ·∇θ

)
. (3.26)

Since CCC is a symmetric, positive definite tensor, so is CCC−1, and hence this constitutive relation
complies with Eq. (II) as long as k(θ)≥ 0 over the temperature range of the analysis.
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3.3.3. Auxiliary constitutive equations

While the Helmholtz free energy is the most useful thermodynamic potential with which to
formulate the theory, the enthalpy and internal energy are more useful for making comparisons
with experiments. It is worth noting that we only want the values of these functions. We do not
need their functional forms in terms of their natural variables, so there is no need to analytically
perform the change of variables through the Legendre transformations. They can be determined in
the code by computing the following definitions after the algorithmic constitutive update is
complete. The internal energy and enthalpy can be calculated according to

E = Ψ+θη, (3.27)
χ = E −ΣΣΣ : εεε. (3.28)

3.4. Heat equation

To derive the heat equation for Spectacular, first use the identity E = Ψ+θη to plug Eq. (3.8) into
Eq. (I) to rewrite the conservation of energy;

θη̇−DTM +∇ ·QQQ− r = 0. (3.29)

The material time derivative of the entropy, Eq. (3.22), is

η̇ =
∂η∞

∂εεε
: ε̇εε+

∂η∞

∂θ
θ̇+LD (εεε,θ) İ1 +

CD (θ)

θref
θ̇

−Kθ
Dİ1

∫ t

0
f1 (t∗− s∗)

dI1

ds
ds−2Gθ

Dėee :
∫ t

0
f2 (t∗− s∗)

deee
ds

ds

+
∂LD

∂εεε
: ε̇εε

∫ t

0
f3 (t∗− s∗)

dI1

ds
ds+2

∂LD

∂θ
θ̇

∫ t

0
f3 (t∗− s∗)

dI1

ds
ds

+
∂LD

∂θ
İ1

∫ t

0
f3 (t∗− s∗)

dθ

ds
ds+2

Cθ
D

θref
θ̇

∫ t

0
f4 (t∗− s∗)

dθ

ds
ds

+
∂2LD

∂θ2 θ̇

∫ t

0

∫ t

0
f3 (t∗− s∗, t∗−u∗)

dI1

ds
dθ

du
dsdu

+
∂2LD

∂εεε∂θ
: ε̇εε

∫ t

0

∫ t

0
f3 (t∗− s∗, t∗−u∗)

dI1

ds
dθ

du
dsdu

+LD (εεε,θ)
∫ t

0

∂ f3 (t∗− s∗)
∂t

dI1

ds
ds+

CD (θ)

θref

∫ t

0

∂ f4 (t∗− s∗)
∂t

dθ

ds
ds

− 1
2

Kθ
D

∫ t

0

∫ t

0

∂ f1 (t∗− s∗, t∗−u∗)
∂t

dI1

ds
dI1

du
dsdu

−Gθ
D

∫ t

0

∫ t

0

∂ f2 (t∗− s∗, t∗−u∗)
∂t

deee
ds

:
deee
du

dsdu

+
∂LD

∂θ

∫ t

0

∫ t

0

∂ f3 (t∗− s∗, t∗−u∗)
∂t

dI1

ds
dθ

du
dsdu

+
Cθ

D
2θref

∫ t

0

∫ t

0

∂ f4 (t∗− s∗, t∗−u∗)
∂t

dθ

ds
dθ

du
dsdu,

(3.30)
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where the equilibrium terms are

∂η∞

∂εεε
=−∂2Ψ∞

∂εεε∂θ
= L∞ (εεε,θ)111−Kθ

∞I1111−2Gθ
∞eee

+
∂L∞

∂εεε
I1 +

∂L∞

∂θ
(θ−θsf)111+

∂2L∞

∂εεε∂θ
I1 (θ−θsf)

(3.31)

and
∂η∞

∂θ
=−∂2Ψ∞

∂θ2 =
C∞ (θ)

θref
+2

∂L∞

∂θ
I1 +2

Cθ
∞

θref
(θ−θref)+

∂2L∞

∂θ2 I1 (θ−θsf) . (3.32)

Substituting the Eq. (3.30) into Eq. (3.29) results in

C̄θ̇ =−∇ ·QQQ+ r+DTM +C +θH , (H)

where, for convenience, we have collected terms into the heat capacity–like quantity,

C̄ =
Cg (θ)

θref
θ+2

∂L∞

∂θ
I1θ+2

Cθ
∞

θref
θ(θ−θref)+

∂2L∞

∂θ2 I1θ(θ−θsf)

+2
∂LD

∂θ
θ

∫ t

0
f3 (t∗− s∗)

dI1

ds
ds+2

Cθ
D

θref
θ

∫ t

0
f4 (t∗− s∗)

dθ

ds
ds

+
∂2LD

∂θ2 θ

∫ t

0

∫ t

0
f3 (t∗− s∗, t∗−u∗)

dI1

ds
dθ

du
dsdu,

(3.33)

a heat source due to temperature-rate dependent heat capacity hereditary integrals,

C =−CD (θ)

θref
θ

∫ t

0

∂ f4 (t∗− s∗)
∂t

dθ

ds
ds−

Cθ
D

2θref
θ

∫ t

0

∫ t

0

∂ f4 (t∗− s∗, t∗−u∗)
∂t

dθ

ds
dθ

du
dsdu, (3.34)

and a heat source associated with thermo-mechanical entropic effects,

H =−Lg (εεε,θ) İ1 +Kθ
∞I1İ1 +2Gθ

∞eee : ėee− I1
∂L∞

∂εεε
: ε̇εε− ∂L∞

∂θ
(θ−θsf) İ1 −

∂2L∞

∂εεε∂θ
: ε̇εε(θ−θsf) İ1

+Kθ
Dİ1

∫ t

0
f1 (t∗− s∗)

dI1

ds
ds+2Gθ

Dėee :
∫ t

0
f2 (t∗− s∗)

deee
ds

ds

− ∂LD

∂εεε
: ε̇εε

∫ t

0
f3 (t∗− s∗)

dI1

ds
ds− ∂LD

∂θ
İ1

∫ t

0
f3 (t∗− s∗)

dθ

ds
ds

− ∂2LD

∂εεε∂θ
: ε̇εε

∫ t

0

∫ t

0
f3 (t∗− s∗, t∗−u∗)

dI1

ds
dθ

du
dsdu−LD (εεε,θ)

∫ t

0

∂ f3 (t∗− s∗)
∂t

dI1

ds
ds

+
1
2

Kθ
D

∫ t

0

∫ t

0

∂ f1 (t∗− s∗, t∗−u∗)
∂t

dI1

ds
dI1

du
dsdu

+Gθ
D

∫ t

0

∫ t

0

∂ f2 (t∗− s∗, t∗−u∗)
∂t

deee
ds

deee
du

dsdu

− ∂LD

∂θ

∫ t

0

∫ t

0

∂ f3 (t∗− s∗, t∗−u∗)
∂t

dI1

ds
dθ

du
dsdu.

(3.35)

Equation (H) is a generalization of the heat equation, and is the additional PDE that must be
solved in conjunction with the linear momentum balance, Eq. (P).
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3.5. Computing instantaneous heat capacities

Our goal is to interrogate the instantaneous heat capacity in the model after a particular history of
applied external conditions. This could be used, for instance, to simulate a DSC experiment. The
place to start is the energy balance equation:

Ė −ΣΣΣ : ε̇εε+∇ ·QQQ− r = 0. (3.36)

The physical setting we are interested in is one where a small sample is in contact with a heat bath
for which we control the temperature. We also control either the applied stress or the applied
strain to the sample. This implies two important conditions. (i) There are no thermal gradients in
the sample, so ∇ ·QQQ = 0. (ii) The heat supply from the heat bath r can instantaneously adopt any
value in order to support the temperature and stress or strain history to which we subject the
sample. Rearranging Eq. (H) and using ∇ ·QQQ = 0, we find that

r = C̄θ̇− (DTM +C +θH ) . (3.37)

Equation (3.37) can be used to calculate the heat capacities.

Cεεε, Constant strain heat capacity per reference volume. This is the marginal quantity of heat
absorbed per unit change in temperature with the strain held fixed, or mathematically,

Cεεε =
r
θ̇

∣∣∣∣
ε̇εε=000

. (3.38)

By invoking the assumptions above, Eq. (3.37) applies, which transforms the heat capacity
definition to

Cεεε =

[
C̄− 1

θ̇
(DTM +C +θH )

]∣∣∣∣
ε̇εε=000

. (3.39)

Each of the terms on the right-hand side of this equation is conveniently available as a state
variable in the model. In order to get this version of the heat capacity, apply any desired
temperature profile (which determines θ̇), apply boundary conditions to the sample so that no
strains occur, and output the right-hand side of Eq. (3.39).

We will now show how this heat capacity calculation relates to its more common definition.
When the heat flux is zero, the heat supply is found by rearranging Eq. (3.36),

r = Ė −ΣΣΣ : ε̇εε. (3.40)

Inserting this into the definition of Cεεε gives

Cεεε =
Ė −ΣΣΣ : ε̇εε

θ̇

∣∣∣∣
ε̇εε=000

, (3.41)

which simplifies to

Cεεε =
Ė
θ̇

∣∣∣∣
ε̇εε=000

, (3.42)
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which is similar to the classical thermodynamic relation

Cεεε =

(
∂E(εεε,θ)

∂θ

)
εεε

, (3.43)

but is generalized to the case where the state of the material depends on the entire history of the
thermodynamic variables, and not just their current value.

CΣΣΣ, Constant stress heat capacity per reference volume. This is the marginal quantity of
heat absorbed per unit change in temperature with the stress held fixed, or mathematically,

CΣΣΣ =
r
θ̇

∣∣∣∣
Σ̇ΣΣ=0

(3.44)

Making use of the assumptions above gives

CΣΣΣ =

[
C̄− 1

θ̇
(DTM +C +θH )

]∣∣∣∣
Σ̇ΣΣ=000

. (3.45)

This relation is nearly identical to the relation for the constant volume heat capacity Eq. (3.39),
except that the applied boundary conditions must be such that the stress state is held constant. To
put it another way, the same output function request is made to Sierra/SM to get the constant
volume heat capacity or the constant stress heat capacity, but the external boundary conditions
determine which version of the heat capacity is measured.

Unsurprisingly, this relation can also be cast in a form that approaches classical thermodynamics.
Let us introduce the enthalpy density χ = E −ΣΣΣ : εεε. Then

χ̇+ Σ̇ΣΣ : εεε = Ė −ΣΣΣ : ε̇εε. (3.46)

This lets us write

CΣΣΣ =
1
θ̇

(
χ̇+ Σ̇ΣΣ : εεε

)∣∣∣∣
Σ̇ΣΣ=000

, (3.47)

or upon simplification

CΣΣΣ =
χ̇

θ̇

∣∣∣∣
Σ̇ΣΣ=000

, (3.48)

which is reminiscent of the well-known relation

CΣΣΣ =

(
∂χ(ΣΣΣ,θ)

∂θ

)
ΣΣΣ

. (3.49)

Again, the relation Eq. (3.48) is suitably generalized for a material with memory.
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Table 3-1 State variables for calculating heat capacities.

Variable State variable name in Sierra/SM

J−1C̄ THERMAL_INERTIA

J−1DTM PDISS_TOT

J−1C HEATCAP_SRC

J−1θH ENTROPIC_SRC

J−1 (DTM +C +θH ) SRC_TOT

Calculating the heat capacities from state variables. As stated earlier, the quantities needed
to compute the heat capacities are recorded as state variables in the Spectacular model. The
names of these state variables are given in Table 3-1. There is one caveat: the variables given in
Eq. (3.39) and Eq. (3.45) are densities per unit volume in the reference configuration, and hence
CΣΣΣ and Cεεε as given above are also heat capacities per unit volume in the reference configuration.
However, the quantities that the Spectacular model outputs in the table above are actually given
per unit volume in the current configuration. This choice is made in anticipation of interfacing
with Aria, which uses the current configuration. In any case, values relative to the reference
configuration can be obtained by multiplying model outputs by J = detFFF .

To compare CΣΣΣ and Cεεε with experiments, they need to be converted to heat capacities per mass, in
which case they should be divided by the initial density ρ0. In other words, CΣΣΣ/ρ0 and Cεεε/ρ0 are
usually suitable to comparisons with the output from DSC experiments.
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4. IMPLEMENTATION

This chapter describes how Spectacular is numerically integrated across a discrete timestep from
tn to tn+1. Spectacular depends on the histories of three state variables: εεε(s), θ(s), and a(s). Since
εεε(tn+1) and θ(tn+1) are passed into the model by the finite element code, the main challenge of
numerically integrating the model is solving for the shift factor at the new time, a(tn+1). The shift
factor a(t) depends on N(t) =N{εεε(s),θ(s),a(s);εεε,θ}, which itself depends on the shift factor
history a(s) through the hereditary convolution integrals that relax according to the material time
adt∗ = dt, see Eqs. (2.42), (2.43) and (2.46). Related to the challenge of solving for loga is
updating the hereditary integrals without explicitly saving the entire state variable histories and
re-integrating over those histories at each new timestep, which would require a prohibitive
amount of computational memory.

The implicit equation for the shift factor is solved using the Newton-Raphson [23] method with a
midpoint integration scheme. Once the shift factor and hereditary integrals have been updated at
the new timestep, all other quantities in the model are easily calculated using expressions that
appear in Chapters 2 and 3.

In this chapter, values at tn and tn+1 are denoted with subscripts n and n+1, respectively.
Newton-Raphson iterations are denoted using superscripts, with k being the current iteration and
k+1 being the next iteration. When subscripts and superscripts become too cluttered, they may
be separated by a vertical bar.

4.1. Updating the hereditary integrals

Before describing the full Newton-Raphson algorithm, it is useful to first understand how the
hereditary integrals are updated from time tn to tn+1. As far as numerical integration is concerned,
there are four types of hereditary integrals that appear in the model. The first and second types are
single and double hereditary convolution integrals that use a relaxation function as a kernel. The
third and fourth types are single and double hereditary integrals that use the partial time derivative
of a relaxation as the kernel. Each type of hereditary integral is discussed individually in
Sections 4.1.1 to 4.1.4.

4.1.1. Single hereditary integrals

The single hereditary integrals in the model take the general form∫ t

0
fr (t∗− s∗)

dξ

ds
ds, (4.1)

where ξ(s) represents a generic state variable history, which in Spectacular could be the history of
the volume strain, deviatoric strain, or temperature; ξ ∈ {I1, eee, θ}. The relaxation functions fr are

39



defined as sums of Prony series, see Eq. (2.56), so it is convenient to express Eq. (4.1) as the sum
of hereditary integrals over single Prony terms;

∫ t

0
fr (t∗− s∗)

dξ

ds
ds =

∫ t

0

Pr

∑
p=1

wrp exp
(
−t∗− s∗

τrp

)
dξ

ds
ds

=
Pr

∑
p=1

wrp

∫ t

0
exp
(
−t∗− s∗

τrp

)
dξ

ds
ds

=
Pr

∑
p=1

wrpJξ
rp, (4.2)

where

Jξ
rp :=

∫ t

0
exp
(
−t∗− s∗

τrp

)
dξ

ds
ds. (4.3)

If all Jξ
rp are known at tn+1, then the single hereditary integrals can be calculated by the weighted

sum in Eq. (4.2). The time derivative of Jξ
rp is found by application of the Leibniz integral rule for

differentiating under the integral sign. The result is

dJξ
rp

dt
=− 1

aτrp
Jξ

rp +
dξ

dt
. (4.4)

The steps used to apply the Leibniz rule are shown in Appendix C. The two terms in Eq. (4.4)
reveal that Jξ

rp changes from the fading memory of past history and also input from new history,
where the latter of which does not decay in the limit of an infinitesimally small timestep. For a
midpoint Euler scheme, Jξ

rp is updated according to

Jξ
rp

∣∣∣
n+1

= Jξ
rp

∣∣∣
n
+(tn+1 − tn)

dJξ
rp

dt

∣∣∣∣∣
n+1/2

. (4.5)

To write the expression for updating Jξ
rp in terms of values at tn and tn+1, plug Eq. (4.4) into

Eq. (4.5),

Jξ
rp

∣∣∣
n+1

= Jξ
rp

∣∣∣
n
+(tn+1 − tn)

(
− 1

an+1/2τrp
Jξ

rp

∣∣∣
n+1/2

+
ξn+1 −ξn

tn+1 − tn

)
, (4.6)

Jξ
rp

∣∣∣
n+1

= Jξ
rp

∣∣∣
n
+(tn+1 − tn)

(
− 1

an+1/2τrp
· 1

2

(
Jξ

rp

∣∣∣
n+1

+ Jξ
rp

∣∣∣
n

)
+

ξn+1 −ξn

tn+1 − tn

)
, (4.7)

then rearrange to solve for Jξ
rp

∣∣∣
n+1

,

Jξ
rp

∣∣∣
n+1

= Jξ
rp

∣∣∣
n

(
2
(
an+1/2

)
τrp − (tn+1 − tn)

2
(
an+1/2

)
τrp +(tn+1 − tn)

)
+

2
(
an+1/2

)
τrp (tn+1 − tn)

2
(
an+1/2

)
τrp +(tn+1 − tn)

ξn+1 −ξn

tn+1 − tn
, (4.8)
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where

an+1/2 =
1
2
(an+1 +an) . (4.9)

The reason for defining the relaxation functions as sums of Prony series is now apparent. The use
of a Prony series allows the hereditary integrals to be incrementally updated based entirely on
state variables at the current timestep tn and next timestep tn+1. This circumvents the need to store
in memory the entire histories of ξ(s) and a(s) to evaluate the hereditary integral.

However, there is a numerical issue with Eq. (4.8) when 2
(
an+1/2

)
τrp − (tn+1 − tn)< 0, which

commonly occurs at high temperatures when an+1/2 is very small (i.e., the material is relaxing
quickly). When 2

(
an+1/2

)
τrp − (tn+1 − tn)< 0, the numerator of the first term associated with

the decay of Jξ
rp

∣∣∣
n

changes from positive to negative, possibly giving a negative value for Jξ
rp

∣∣∣
n+1

,

which is not a valid evaluation of the hereditary integral. The intuitive explanation for this
occurrence is that relaxation times are faster than the timestep so that the hereditary integrals are
decaying to zero at time trelaxed somewhere in-between tn and tn+1, i.e., tn < trelaxed < tn+1.
However, because this numerical integration scheme assumes linear behavior over a single
timestep, the algorithm, without modification, is extrapolating the rapid decay to zero at trelaxed to
give a negative value of the integral at tn+1. To prevent this spurious evaluation of the Prony
integrals, the instances of tn+1 − tn in Eq. (4.8) are replaced with
∆t = min

{
tn+1 − tn, 2

(
an+1/2

)
τrp
}

, which correctly limits the decay of the memory term to zero
when an+1/2 is very small. The exception to this replacement is the tn+1 − tn term appearing as the
denominator of (ξn+1 −ξn)/(tn+1 − tn). This term is unchanged because it is related to the input
of new history rather than the fading memory of previous history. After this heuristic
modification, the final expression for updating Jξ

rp across the timestep is

Jξ
rp

∣∣∣
n+1

= Jξ
rp

∣∣∣
n

(
2
(
an+1/2

)
τrp −∆t

2
(
an+1/2

)
τrp +∆t

)
+

2
(
an+1/2

)
τrp∆t

2
(
an+1/2

)
τrp +∆t

ξn+1 −ξn

tn+1 − tn
,

∆t = min
{

tn+1 − tn, 2
(
an+1/2

)
τrp
}
.

(4.10)

4.1.2. Double hereditary integrals

The double hereditary integrals in the model take the general form

∫ t

0

∫ t

0
fr (t∗− s∗, t∗−u∗)

dξ

ds
:

dφ

du
dsdu, (4.11)

where both ξ(s) and φ(s) are generic state variable histories (ξ, φ ∈ {I1, eee, θ}) and “:” is a double
contraction when ξ and φ are both second-order tensors (i.e., ξi jφi j following the summation
convention for repeated indices) and otherwise is the scalar product. The double hereditary
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integrals can also be written in terms of integrals over individual Prony terms,∫ t

0

∫ t

0
fr (t∗− s∗, t∗−u∗)

dξ

ds
:

dφ

du
dsdu

=
∫ u=t

u=0

∫ s=t

s=0

Pr

∑
p=1

wrp exp
(
−t∗− s∗

τrp

)
exp
(
−t∗−u∗

τrp

)
dξ

ds
:

dφ

du
dsdu

=
Pr

∑
p=1

wrp

(∫ s=t

s=0
exp
(
−t∗− s∗

τrp

)
dξ

ds
ds
)

:
(∫ u=t

u=0
exp
(
−t∗−u∗

τrp

)
dφ

du
du
)

=
Pr

∑
p=1

wrpJξ
rp : Jφ

rp (4.12)

where Jξ
rp uses the same definition as before, see Eq. (4.3). Since the double hereditary integrals

can be expressed in terms of Jξ
rp, there is no need for a new equation to update them. Once the Jξ

rp
terms have been updated following Eq. (4.10), the double hereditary integral at the new timestep
can be calculated using Eq. (4.12).

4.1.3. Single hereditary integrals with ∂ fr(t∗−s∗)
∂t as the kernel

Some single hereditary integrals in the model use a kernel that is a partial derivative of a
relaxation function with respect to time. The general form for these integrals is∫ t

0

∂ fr (t∗− s∗)
∂t

dξ

ds
ds. (4.13)

These integrals can also be written as a sum of Prony integrals;

∫ t

0

∂ fr (t∗− s∗)
∂t

dξ

ds
ds =

∫ t

0

∂

∂t

[
Pr

∑
p=1

wrp exp
(
−t∗− s∗

τrp

)]
dξ

ds
ds

=
Pr

∑
p=1

wrp

∫ t

0

∂

∂t

[
exp
(
−t∗− s∗

τrp

)]
dξ

ds
ds

=
Pr

∑
p=1

wrp

∫ t

0

dt∗

dt
∂

∂t∗

[
exp
(
−t∗− s∗

τrp

)]
dξ

ds
ds

=
Pr

∑
p=1

wrp

∫ t

0

(
− 1

aτrp

)
exp
(
−t∗− s∗

τrp

)
dξ

ds
ds

=
Pr

∑
p=1

wrp

(
− 1

aτrp

)∫ t

0
exp
(
−t∗− s∗

τrp

)
dξ

ds
ds

=
Pr

∑
p=1

wrp

(
− Jξ

rp

aτrp

)
. (4.14)
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Since these integrals can be written in terms of Jξ
rp, they can also be updated using Eq. (4.10).

However, for consistency with the midpoint integration scheme, an+1/2 should be used to
calculate their value at tn+1;

∫ tn+1

0

∂ fr
(
t∗n+1 − s∗

)
∂t

dξ

ds
ds =

Pr

∑
p=1

wrp

−
Jξ

rp

∣∣∣
n+1(

an+1/2
)

τrp

 . (4.15)

4.1.4. Double hereditary integrals with ∂ fr(t∗−s∗)
∂t as the kernel

Some double hereditary integrals in the model use a kernel that is a partial derivative of a
relaxation function with respect to time. The general form for these integrals is∫ t

0

∫ t

0

∂ fr (t∗− s∗, t∗−u∗)
∂t

dξ

ds
:

dφ

du
dsdu, (4.16)

where, once again, “:” is a double contraction when ξ and φ are both second-order tensors and
otherwise is the scalar product. These integrals can also be written as a sum of Prony integrals;∫ t

0

∫ t

0

∂ fr (t∗− s∗, t∗−u∗)
∂t

dξ

ds
:

dφ

du
dsdu

=
∫ u=t

u=0

∫ s=t

s=0

∂

∂t

[
Pr

∑
p=1

wrp exp
(
−t∗− s∗

τrp

)
exp
(
−t∗−u∗

τrp

)]
dξ

ds
:

dφ

du
dsdu

=
Pr

∑
p=1

wrp

∫ u=t

u=0

∫ s=t

s=0

∂

∂t

[
exp
(
−t∗− s∗

τrp

)
exp
(
−t∗−u∗

τrp

)]
dξ

ds
:

dφ

du
dsdu

=
Pr

∑
p=1

wrp

∫ u=t

u=0

∫ s=t

s=0

dt∗

dt
∂

∂t∗

[
exp
(
−t∗− s∗

τrp

)
exp
(
−t∗−u∗

τrp

)]
dξ

ds
:

dφ

du
dsdu

=
Pr

∑
p=1

wrp

∫ u=t

u=0

∫ s=t

s=0

(
− 2

aτrp

)
exp
(
−t∗− s∗

τrp

)
exp
(
−t∗−u∗

τrp

)
dξ

ds
:

dφ

du
dsdu

=
Pr

∑
p=1

wrp

(
− 2

aτrp

)(∫ s=t

s=0
exp
(
−t∗− s∗

τrp

)
dξ

ds
ds
)

:
(∫ u=t

u=0
exp
(
−t∗−u∗

τrp

)
dφ

du
ds
)

=
Pr

∑
p=1

wrp

(
−2Jξ

rp : Jφ
rp

aτrp

)
. (4.17)

Since these integrals can be written in terms of Jξ
rp, they can also be updated using Eq. (4.10).

However, for consistency with the midpoint integration scheme, an+1/2 should be used to
calculate the integrals at tn+1;

∫ tn+1

0

∫ tn+1

0

∂ fr
(
t∗n+1 − s∗, t∗n+1 −u∗

)
∂t

dξ

ds
dφ

du
dsdu =

Pr

∑
p=1

wrp

−
2
(

Jξ
rp

∣∣∣
n+1

)
:
(

Jφ
rp

∣∣∣
n+1

)
(
an+1/2

)
τrp

 .

(4.18)
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4.2. Newton-Raphson method

There are essentially three ingredients to the Newton-Raphson method. The first is defining the
residual function for which the root is to be found, which is discussed in Section 4.2.1. The
second is choosing an appropriate initial guess for the method that is reasonably close to the root,
which is discussed in Section 4.2.2. The third is evaluating the derivatives of the residual
function, which is discussed in Section 4.2.3.

4.2.1. Defining the residual function

The Newton-Raphson method is employed to solve for the shift factor at the end of the timestep,
logan+1. To this end, a residual function is formed from Eq. (2.43),

Rloga (I1,n+1,eeen+1,θn+1, logan+1) =


logan+1 +

C1 (Nn+1 −θref)

C2 +Nn+1 −θref
, Nn+1 ≥ Nmatch,

logan+1 −A1 −
A2

Nn+1
, Nn+1 < Nmatch.

(4.19)

Recall that A1 is chosen to ensure that the residual is continuous, see Eq. (2.44). The residual is
not smooth at Nmatch. For a given I1,n+1, eeen+1, and θn+1, the logan+1 value that satisfies
Rloga (I1,n+1,eeen+1,θn+1, logan+1) = 0 is a solution to Eq. (2.43). To evaluate the residual, an

expression for Nn+1 in terms of Jξ
rp

∣∣∣
n+1

is needed, which is easily obtained from Eq. (2.46);

Nn+1 (I1,n+1,eeen+1,θn+1, logan+1) = θn+1 −C0

PT

∑
p=1

wT p Jθ
T p

∣∣∣
n+1

+C3

(
I1,n+1 − I1,ref −

PV

∑
p=1

wV p JI1
V p

∣∣∣
n+1

)

+C4

P2

∑
p=1

w2p Jeee
2p
∣∣
n+1 : Jeee

2p
∣∣
n+1 .

(4.20)

The Newton-Raphson method [23] works by evaluating a residual function and its derivative at a
given point, then extrapolating the tangent line to zero to determine the next guess. For the
residual in Eq. (4.19), this step is written as

Rk
loga +

∂Rloga

∂ logan+1

∣∣∣∣k(logak+1
n+1 − logak

n+1

)
= 0, (4.21)

where logak
n+1 is the shift factor at the current iteration and logak+1

n+1 is the value at the next
iteration. The basic equation for Newton-Raphson is found by solving for logak+1

n+1,

logak+1
n+1 = logak

n+1 −Rk
loga

(
∂Rloga

∂ logan+1

∣∣∣∣k
)−1

. (4.22)
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The method converges when the residual on logak+1
n+1 is zero within a specified tolerance. The

requirements on the residual function for Newton-Raphson method to converge are not discussed
here, but can be found elsewhere [23].

4.2.2. Initial guess

The initial guess is important for the convergence of the method. It is initially assumed that
changes in the shift factor are small over a single timestep. Therefore, the converged value of the
shift factor from the previous timestep is used as the initial guess for the current timestep;

loga0
n+1 = logan. (4.23)

However, sometimes the shift factor will undergo large changes over a single timestep. This is
especially common when heating from deep in the glass, where the shift factor will precipitously
drop as all non-equilibrium terms suddenly relax to zero. In this case, the Newton-Raphson
method may not converge when using logan as the initial guess. However, after such an event, the
material will be very close to the equilibrium state. Therefore, if the Newton-Raphson method
fails once, the method is restarted using the equilibrium state as the initial guess,

loga0
n+1 = loga∞,n+1. (4.24)

The expression for loga∞,n+1 is found from Eqs. (4.19) and (4.20), but assuming that all
Jξ

rp = 0;

loga∞,n+1 =


−

C1 (N∞,n+1 −θref)

C2 +N∞,n+1 −θref
, N∞,n+1 ≥ Nmatch,

A1 +
A2

N∞,n+1
, N∞,n+1 < Nmatch,

(4.25)

where
N∞,n+1 = θn+1 +C3

(
I1,n+1 − I1,ref

)
. (4.26)

4.2.3. Derivative of the residual function

To carry out each Newton-Raphson iteration by evaluating Eq. (4.22), the derivative of Eq. (4.19)
is needed. Analytically evaluating the derivative is not difficult, but is tedious and requires several
applications of the chain rule for differentiation. The derivative of Eq. (4.19) is

∂Rloga

∂ logan+1
=


1+

C1C2

(C2 +Nn+1 −θref)
2

∂Nn+1

∂ logan+1
, Nn+1 ≥ Nmatch

1+
A2

N2
n+1

∂Nn+1

∂ logan+1
, Nn+1 < Nmatch.

(4.27)
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The expression for ∂Nn+1
∂ logan+1

is found by taking the derivative of Eq. (4.20),

∂Nn+1

∂ logan+1
=−C0

PT

∑
p=1

wT p

∂ Jθ
T p

∣∣∣
n+1

∂ logan+1
−C3

PV

∑
p=1

wV p

∂ JI1
V p

∣∣∣
n+1

∂ logan+1

+2C4

P2

∑
p=1

w2p

(
Jeee

2p
∣∣
n+1

)
:

 ∂ Jeee
2p

∣∣∣
n+1

∂ logan+1

 .

(4.28)

Recall from Eq. (2.46) that V ∈ {1, 3} and T ∈ {3, 4} with V = 3 and T = 4 being the choices
consistent with the PEC [5, 6, 7] model theory.

The derivative of Jξ
rp

∣∣∣
n+1

with respect to logan+1 appears in Eq. (4.28), but the expression for

Jξ
rp

∣∣∣
n+1

in Eq. (4.10) is in terms of an+1/2. Therefore, another application of the chain rule is

required,
∂ Jξ

rp

∣∣∣
n+1

∂ logan+1
=

∂ Jξ
rp

∣∣∣
n+1

∂an+1/2

dan+1/2

dlogan+1
. (4.29)

The derivative of Eq. (4.10) with respect to an+1/2 is

∂ Jξ
rp

∣∣∣
n+1

∂an+1/2
=

4τrp∆t Jξ
rp

∣∣∣
n
+2τrp (∆t)2

(
ξn+1−ξn
tn+1−tn

)
(
2
(
an+1/2

)
τrp +∆t

)2 . (4.30)

Equation (4.30) assumes that ∆t is not a function of an+1/2, although that is not always true, see
Eq. (4.10) and the arguments in Section 4.1.1. Finally, the second term in Eq. (4.29) simplifies
to

dan+1/2

dlogan+1
=

d
dlogan+1

(
1
2
(an+1 +an)

)
=

1
2

dan+1

dlogan+1

=
1
2

(
dlogan+1

dan+1

)−1

=
1
2

(
1

an+1 ln10

)−1

=
ln10

2
an+1. (4.31)
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5. VERIFICATION

5.1. Introduction

In this chapter, parts of the Spectacular model are verified by comparing model output to
analytical solutions. However, Spectacular’s implicit material clock severely limits the
combinations of parameters and thermo-mechanical histories for which analytical, closed-form
solutions exist. To sidestep this difficulty, rigorous verification is suported with qualitative “sanity
checks” of the constitutive behavior. Hopefully, the qualitative checks will be supported or
replaced in the near future with more rigorous verification.

Two verification exercises and two sanity checks are presented here. In Section 5.2, the
relationship between loga and N is verified under traction-free cooling and heating at a constant
temperature rate. An isothermal aging period in-between the cooling and heating periods is used
to verify that the shift factor relaxes to the correct equilibrium value. The parameters for this
exercise where chosen to check that the piecewise shift factor equation correctly switches
between its WLF and Arrhenius parts. Previous model forms exhibited “infinite aging” of the
yield stress, where the yield stress continued to increase under isothermal aging long after the
experimental yield stress had stopped changing [3]. One reason for implementing the Arrhenius
shift factor was to limit the equilibrium shift factor at temperatures below the glass transition, and
thereby eliminate infinite aging. To this end, it is demonstrated in Section 5.3 that the new
Arrhenius shift factor can be used to adjust the time at which the yield stress stops evolving under
isothermal aging. Although not truly a verification exercise, this demonstration shows that the
new model form addresses previously identified model form errors. Another qualitative exercise
is shown in Section 5.4, where the new strain hardening terms are used to stabilize tensile creep.
This addresses another previously identified model form error for PEC-family models, where
tensile creep results in infinite strain rates at unrealistically low creep stresses [24]. Finally, a
rigorous verification of all constitutive and thermo-mechanical equations is shown in Section 5.5
for the case when the material clock is deactivated, the strain is fixed at zero, and the temperature
rate is constant.

Verification tests used for the UNIVERSAL_POLYMER model have also been applied to Spectacular
and are incorporated into the Sierra test repos. For more details on the UNIVERSAL_POLYMER
model verification, see the LAMÉ manual [10]

5.2. Shift factor during a stress-free cool-hold-reheat cycle

The piecewise material clock was verified using a cool-hold-reheat cycle under free expansion
(traction-free boundary conditions). Simulations were conducted in Sierra/SM using a single
8-node hexahedral element (hex8). A uniform temperature field was applied that started at
120 ◦C, was cooled to 75 ◦C at 1 ◦C/min, held constant at 75 ◦C for one year, then reheated back
to 120 ◦C at 1 ◦C/min. The extremely long holding time was chosen to allow the shift factor to
acheive its equilibrium value. Model parameters for the verification exercise are listed in
Table 5-1. The temperature cycle was simulated twice: once using the piecewise Arrhenius–WLF
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Table 5-1 Parameters used to verify the piecewise shift factor function under a stress-free cool-hold-heat cycle.
Unlisted parameters are either irrelevant to this thermo-mechanical history, assume their default value, or are
zero.

Name Symbol Value Units

BULK GLASSY 0 Kref
g 5 GPa

BULK RUBBERY 0 Kref
∞ 5 GPa

VOLCTE GLASSY 0 αref
g 500 10−6/K

VOLCTE GLASSY 1 αθ
g 1 10−6/K2

VOLCTE RUBBERY 0 αref
∞ 500 10−6/K

VOLCTE RUBBERY 1 αθ
∞ 1 10−6/K2

REFERENCE TEMPERATURE θref 373.15 K
STRESS FREE TEMPERATURE θsf 393.15 K
WLF C1 Ĉ1 10 –
WLF C2 Ĉ2 50 –
EACT ON R Ea/R 60000 K
TMATCH WLF ARH θmatch 363.15 K
CLOCK C3 C3 1000 K
RELAX_TIME1 τ1p {1} s
F1 w1p {1} –
RELAX_TIME3 τ3p {10−6} s
F3 w3p {1} –
RELAX_TIME4 τ4p {10−6} s
F4 w4p {1} –

shift factor and once using the WLF-only shift factor. To verify the implementation of the shift
factor equation, the value of N was output from the model and used to analytically calculate loga
using Eq. (2.43). The value of loga was also output from the model was compared to the
analytically calculated loga. By allowing the model to equilibrate, the equilibrium loga given by
Eq. (2.50) was also verified. The calculation of N itself was not verified for this particular
thermo-mechanical history.

Figure 5-1a demonstrates that the relationship between N and loga has been correctly
implemented in the code by comparing the shift factor calculated in the model to the shift factor
calculated by Eq. (2.43). Figure 5-1b plots the shift factor from the model against temperature.
Figure 5-1b also plots the equilibrium WLF and Arrhenius shift factors given by Eq. (2.50). At
high temperature, the memory integrals are negligible and the model shift factor equals the
equilibrium shift factor. As the model cools, the memory terms become more important as the
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(a) Shift factor versus clock temperature N. (b) Shift factor and equilibrium shift factor versus
temperature.

Figure 5-1 (a) Verification of the shift factor as a function of the clock temperature, loga(N), which is given by
Eq. (2.43). (b) Verification of the equilibrium shift factor as a function of temperature, loga∞(θ), which is given
by Eq. (2.50). Parameters for the calculations are listed in Table 5-1.

shift factor increases, causing the shift factor to lag behind the equilibrium value. If the model is
cooled from the equilibriums state, the shift factor should not exceed the equilibrium shift factor.
After cooling, there is an isothermal hold, during which the memory terms relax and the shift
factor approaches its equilibrium value. For the Arrhenius case, the shift factor reaches its
equilibrium value during the one-year hold. The equilibrium WLF shift factor is much higher, and
therefore the WLF-only model did not reach equilibrium after the simulated one-year hold.

Experimentally, the shift factor is commonly reported as a function of temperature. For this
reason, it is useful for the model to accept parameters that define the shift factor equation in
temperature space, then, inside the model, convert the temperature-based parameters to
parameters defining the shift factor as a function of N. We name the hypothetical experimentally
measured shift factor function as log â(θ). Its expression is given in Eq. (2.48). To reduce the
Spectacular shift factor to a function of temperature, consider the equilibrium shift factor under
free expansion loga∞(θ), the expression for which is given in Eq. (2.50). The parameters defining
log â(θ) (which are Ĉ1, Ĉ2, Ea/R, θmatch) can be converted to the parameters defining loga∞(θ)
(which are C1, C2, A2, Nmatch) using Eqs. (2.51) to (2.53) and (2.55). This conversion is
approximate, but is very accurate for the example illustrated in Fig. 5-2, which uses the
parameters listed in Table 5-1.

5.3. Using the Arrhenius Sub–Glass Transition Shift Factor to Predict the Equilibrium
Yield Stress After Isothermal Aging

The piecewise Arrhenius–WLF shift factor was implemented to limit the extent of physical aging
below the glass transition temperature. In previous work at Sandia [3], SPEC was used to predict
yield stress evolution after isothermal aging at 55 ◦C for 828/DEA. Experiments found that the
yield stress reached an equilibrium value at around 1000 h. In contrast, SPEC predicted that the

49



Figure 5-2 Demonstration of converting from shift factor expressed as a function of temperature to the equilib-
rium shift factor expressed as a function of N∞(θ). The expression for log â(θ) is shown in Eq. (2.48) and the
expression for loga∞(θ) = loga(N∞(θ)) is shown in Eq. (2.50).

yield stress would continue to evolve for orders-of-magnitude longer than 1000 h. The WLF clock
diverges, so the equilibrium shift factor is extremely high, or even poorly defined, at temperatures
far below the glass transition. This allows for the yield stress to continuously evolve as the shift
factor increases indefinitely. Transitioning to an Arrhenius function below the glass transition
prevents the material clock from diverging. The choice of an Arrhenius form for the sub–glass
transition shift factor is supported by experimental measurements of the equilibrium shift factor
on a highly aged glass (20-million year old amber) [2]. Furthermore, predictions of physical
aging in a KARH-type model were improved when the WLF shift factor was replaced with a
piecewise Arrhenius–WLF shift factor [18].

To the authors knowledge, an Arrhenius-WLF shift factor has not been used to predict yield stress
evolution. In this section, it is demonstrated that the piecewise shift factor can be used to select
the time at which the yield stress stops evolving under isothermal aging. This section therefore
provides no verification, but is instead a proof-of-concept to justify the sub–glass transition
Arrhenius shift factor form. Predictions from Spectacular and experiments for the yield stress
evolution are compared in Fig. 5-3. Details of the experiments and simulations can be found in
Refs. [3, 1]. Figure 5-3a shows predictions of the yield stress evolution using a WLF-only shift
factor and parameters that originally appeared in Table 5-5 of Ref. [1] (Figure 5-3a also appeared
in Ref. [1] as Figure 5-24d). Although the slope of the yield stress versus aging time in Fig. 5-3a
is initially correct, the yield stress continues to evolve past the time at which the experimental
yield stress is constant. In Fig. 5-3b, the model parameters are modified to use the
Arrhenius-WLF shift factor form with an activation energy chosen such that the yield stress stops
evolving around 1000 h. The parameters used for the simulations in Fig. 5-3b are listed in
Appendix D. Adding the Arrhenius piece to the clock also changed the yield stress without
changing any other parameters. The clock form is tightly coupled to nearly all model responses
and therefore changing the clock necesitates a new model calibration. The activation energy
required to get the model to equilibrate at a time comparable to experimental measurements of the
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(a) (b)

Figure 5-3 Compressive yield stress after isothermal aging of 828/DEA for experiments (triangles) and Spec-
tacular predictions (squares). (a) Predictions using the parameters given in Table 5-5 of Ref. [1]. (b) Predictions
that modify the parameters from Table 5-5 of Ref. [1] to utilize the Arrhenius sub–glass transition shift factor
with Ea/R = 15000K and θmatch = 71 ◦C.

time-to-equilibrium use an activation energy of Ea/R = 15000K. Unfortunately, this is much
lower than the experimentally measured activation energy of Ea/R = 137000K for
828/D400 [25]. When a more physically realistic activation energy is used, the model still takes
too long to reach the equilibrium yield stress [26]. Future work should explore this discrepancy,
specifically to see if it is possible to parameterize the model in such a way to get the correct
equilibrium time using the experimentally measured activation energy.

5.4. Creep with strain hardening

Polymers exhibit large-strain hardening, which is key for arresting instabilities caused by
post-yield softening. Neck propogation is an example of one such instability [27]. This fiscal
year, strain hardening terms were added to Spectacular by introducing strain dependencies to the
shear and bulk moduli. As justification for this new development, it is shown here that the strain
hardening addresses a previous model deficiency where tensile creep resulted in an infinite strain
rate at unrealistically low creep stresses [24]. By activating the strain hardening parameter GI2

∞,
the tensile creep is stabilized. Simulations were conducted Sierra/SM using a single 8-node
hexahedral element (hex8). The simulated thermo-mechanical history begins at 85 ◦C in a
stress-free state. The temperature is then lowered to 65 ◦C, at which time a small preload is
applied in uniaxial compression by ramping from zero stress to 0.5 MPa at a strain rate of
0.01/min. Then, the uniaxial stress is ramped from the preload value to the creep stress at a strain
rate of 0.1/min. Strain rates were converted to stress rates using the glass Young’s modulus. The
creep simulations used a preliminary Spectacular calibration for 828/DEA, the parameters fow
which are given in Appendix E.

The creep response from Spectacular in tension and compression without any strain hardening is
shown in Fig. 5-4. In compression, the creep response is stable even at 40 MPa, but the tensile
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Figure 5-4 Predictions for creep in tension and compression without strain hardening.

Figure 5-5 Effect of increasing the strain hardening parameter GI2
∞ on the tensile creep response at 14 MPa.
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Figure 5-6 Temperature and volume strain histories applied for the zero-strain cooling at constant temperature
rate verification problem.

response exhibits infinite strain rate within 6 h of creep for stresses as low as 13.5 MPa. The
origin of this effect is related to the C3 and C4 terms in the clock. In compression, the C3 term
slows relaxation while the C4 term accelerates it. In tension, both C3 and C4 accelerate the clock,
leading to a positive feedback loop that eventually causes an infinite strain rates in the absence of
strain hardening. Figure 5-5 shows the effect of increasing GI2

∞ on the tensile creep response at
14 MPa. Even a modest value of GI2

∞ = 1MPa is sufficient to prevent runaway creep.

5.5. Zero-strain cooling at a constant temperature rate

Thermal terms in the model were verified using a temperature sweep at a constant cooling rate
and constant, zero strain. By setting C1 = 0, the material clock is deactivated, which makes the
model equations amenable to analytic evaluation. The verification problem used a
thermo-mechanical history with fixed zero strain and a temperature profile that was cooled from
200 ◦C to −50 ◦C at a constant cooling rate of 1 ◦C/min. The applied temperature and strain
profiles are plotted in Fig. 5-6. The model parameters used for verification are listed in Table 5-2.
For the Sierra/SM simulations, the temperature sweep was divided into 1000 timesteps, the target
relative residual was 10−8, the acceptable relative residual was 10−7, the target absolute residual
was 10−4, and the acceptable relative residual was 10−3. Sierra/SM simulations used a single
8-node, hexahedral element (hex8).

The verification problem compared output from Sierra/SM to analytical solutions for Ψ(t), ΣΣΣ(t),
η(t), DTM(t), C̄(t), C (t), H (t), Epot(t), and N(t). With C1 = 0, the material clock is deactivated,
therefore t∗− s∗ = t − s. Since the cooling rate is constant, dθ/ds = θ̇ is constant for all s ∈ [0, t],
and dθ/ds can therefore be removed from all the hereditary integrals involving temperature. The
strain is fixed at εεε = 000, so all equilibrium and non-equilibrium terms involving either I1 or eee are
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Table 5-2 Parameters used for the verification problem of zero-strain cooling at a constant temperature rate.
Unlisted parameters are either irrelevant to the thermo-mechanical history, assume their default value, or are
zero.

Name Symbol Value Units

BULK GLASSY 0 Kref
g 5 GPa

BULK GLASSY 1 Kθ
g −40 MPa/K

BULK RUBBERY 0 Kref
∞ 1 GPa

BULK RUBBERY 1 Kθ
∞ −10 MPa/K

VOLCTE GLASSY 0 αref
g 200 10−6/K

VOLCTE GLASSY 1 αθ
g 0.5 10−6/K2

VOLCTE RUBBERY 0 αref
∞ 600 10−6/K

VOLCTE RUBBERY 1 αθ
∞ 0.1 10−6/K2

HEAT CAPACITY GLASSY 0 Cref
g 100 kJ/(m3 ·K)

HEAT CAPACITY GLASSY 1 Cθ
g 0.1 kJ/(m3 ·K2)

HEAT CAPACITY RUBBERY 0 Cref
∞ 1000 kJ/(m3 ·K)

HEAT CAPACITY RUBBERY 1 Cθ
∞ 1 kJ/(m3 ·K2)

REFERENCE TEMPERATURE θref 373.15 K
STRESS FREE TEMPERATURE θsf 473.15 K
CLOCK C1 C1 0 –
CLOCK C3 C3 0 K
RELAX_TIME3 τ3p {10−2,100,102,103} s
F3 w3p {0.2, 0.3, 0.3, 0.2} –
RELAX_TIME4 τ4p {10−3, 104} s
F4 w4p {0.5, 0.5} –
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zero. Under these conditions, the Helmholtz free energy, Eq. (3.14), simplifies to

Ψ(t) =−C∞ (θ)

2θref
(θ−θref)

2 − CD (θ)

2θref
θ̇

2
∫ t

0

∫ t

0
f4 (t − s, t −u) dsdu. (5.1)

Only the diagonal terms of the stress, Eq. (3.20), are non-zero, and their expression is

Σ11 (t) = Σ22 (t) = Σ33 (t) =−L∞ (εεε,θ)(θ−θsf)−LD (εεε,θ) θ̇

∫ t

0
f3 (t − s) ds, (5.2)

The entropy, Eq. (3.22), simplifies to

η(t) =
C∞ (θ)

θref
(θ−θref)+

Cθ
∞

2θref
(θ−θref)

2 +
CD (θ)

θref
θ̇

∫ t

0
f4 (t − s) ds

+
Cθ

D
2θref

θ̇
2
∫ t

0

∫ t

0
f4 (t − s, t −u) dsdu.

(5.3)

The thermo-mechanical dissipation, Eq. (3.19), simplifies to

DTM (t) =
CD (θ)

2θref
θ̇

2
∫ t

0

∫ t

0

∂ f4 (t − s, t −u)
∂t

dsdu. (5.4)

The thermal inertia, Eq. (3.33), simplifies to

C̄ (t) =
Cg (θ)

θref
θ+2

Cθ
∞

θref
θ(θ−θref)+2

Cθ
D

θref
θθ̇

∫ t

0
f4 (t − s) ds. (5.5)

The viscoelastic heat capacity source term, Eq. (3.34), simplifies to

C (t) =−CD (θ)

θref
θθ̇

∫ t

0

∂ f4 (t − s)
∂t

ds−
Cθ

D
2θref

θθ̇
2
∫ t

0

∫ t

0

∂ f4 (t − s, t −u)
∂t

dsdu. (5.6)

The viscoelastic entropic source term, Eq. (3.35), is identically zero under constant, zero strain;

H (t) = 0. (5.7)

The potential energy, Eq. (B.2), simplifies to

Epot (t) = Ψ+θη−Lref
D (θref −θsf) I1,ref +

Cg (θ)

2θref
(θ−θref)

2

+θrefLref
D I1,ref −θ

Cg (θ)

θref
(θ−θref)

+θref
∂LD

∂θ

∣∣∣∣
εεε=000
θ=θref

I1,ref (θref −θsf)−θ
Cθ

g

2θref
(θ−θref)

2 .

(5.8)

The clock temperature, Eq. (2.46), simplifies to

N (t) = θ− θ̇

∫ t

0
f4 (t − s) ds−C3I1,ref. (5.9)
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Recall that the relaxation functions are parameterized using Prony series. For convenience, the
Prony series form Eq. (2.56) is repeated here,

fr(x,y) =
Pr

∑
p=1

wrpexp

(
− x

τrp

)
exp
(
− y

τrp

)
. (5.10)

For this Prony series representation, various integrals of the relaxation functions evaluate to∫ t

0
fr (t − s) ds =

Pr

∑
p=1

[
wrpτrp

(
1− exp

(
−t
τrp

))]
, (5.11)

∫ t

0

∫ t

0
fr (t − s, t −u) dsdu =
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∑
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wrpτ

2
rp

(
1− exp

(
−t
τrp

))2
]
, (5.12)

∫ t

0

∂ fr (t − s)
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ds =
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∑
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[
−wrp

(
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τrp
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, (5.13)

∫ t

0

∫ t

0

∂ fr (t − s, t −u)
∂t

dsdu =
Pr

∑
p=1

[
−2wrp

(
1− exp

(
−t
τrp

))2
]
. (5.14)

Since the integrals of the relaxation functions are analytic expressions, Eqs. (5.1) to (5.9) are also
analytic expressions.

Figure 5-7 compares the Sierra/SM and analytical calculations for Ψ(t), DTM(t), η(t), and the
diagonal components of ΣΣΣ(t). For all four quantities, good agreement is found between the
computational and analytical solutions. Figure 5-8 compares the Sierra/SM and analytical
calculations for C̄(t), C (t), and θ(t)H (t). All three quantities show good agreement between the
computational and analytical solutions. Figure 5-8 also verifies two different methods for
calculating the constant-strain heat capacity. The first method uses Eq. (3.38), which calculates
the constant-strain heat capacity by rearranging the generalized heat equation for Spectacular. For
convenience, Eq. (3.38) is repeated here:

Cεεε =

[
C̄− 1

θ̇
(DTM +C +θH )

]∣∣∣∣
ε̇εε=000

. (5.15)

The second method calculates the constant-strain heat capacity using a more general definition for
viscoelastic materials, which first appeared in Eq. (3.42) and is repeated here for convenience:

Cεεε =
Ė
θ̇

∣∣∣∣
ε̇εε=000

. (5.16)

Figure 5-8d shows that both methods produce the same result and that the computational solution
is in agreement with the analytical solution. Figure 5-9 compares the Sierra/SM and analytical
calculations for Epot(t) and N(t), both of which show good agreement between computational
and analytical responses. Figure 5-9b also compares N(t) and NPEC(t), where NPEC(t) is
calculated from Epot(t) using Eq. (B.8). Comparing NPEC(t) to N(t) allows direct comparisons of
the PEC and SPEC material clocks, since Epot(t) and N(t) have differrent units. Figure 5-9b
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(a) Helmholtz free energy, Ψ(t) (b) Thermo-mechanical dissipation, DTM = ∂Ψ/∂t

(c) Stress, ΣΣΣ = ∂Ψ/∂εεε (d) Entropy, η = ∂Ψ/∂θ

Figure 5-7 Verification of the Helmholtz free energy and its partial derivatives during zero-strain cooling at a
constant temperature rate. Parameters for the calculations are listed in Table 5-2.
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(a) Thermal inertia, C̄ (b) Heat capacity source, C

(c) Entropic source, θH (d) Constant strain heat capacity, Cεεε

Figure 5-8 Verification of the terms in the heat equation during zero-strain cooling at a constant temperature
rate. Parameters for the calculations are listed in Table 5-2.

(a) Potential (or configurational) energy, Epot (b) Clock temperature, N

Figure 5-9 Verification of the potential energy and clock temperature during zero-strain cooling at a constant
temperature rate. Parameters for the calculations are listed in Table 5-2.
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shows that N(t) and NPEC(t) are relatively close for the thermo-mechanical history under
consideration here, indicating that the simplifications for reducing Epot(t) to N(t) are
well-justified for the present verification problem. It should be cautioned however, that N(t) and
NPEC(t) are not always in agreement. For example, during isothermal aging under stress, N(t)
and NPEC(t) can deviate significantly [26].

5.6. Conclusion

The Spectacular constitutive model was verified under limited conditions. In Section 5.2, the
relationship between N and loga(N) was verified for the new piecewise WLF–Arrhenius shift
factor function, at least under stress-free cooling. In Section 5.5, all constitutive and
thermo-mechanical equations were verified for cooling at a constant temperature rate and zero
strain. Qualitative checks were also executed to verify the model behaves as expected under more
complicated conditions, but the qualitative checks were also strategically chosen to demonstrate
how recent model developments have addressed previously identified model form errors. In
Section 5.3, it was shown that the Arrhenius sub–glass transition shift factor could be adjusted so
that the yield stress predicted by the model stops evolving under isothermal aging at the same
time as the experimental yield stress. Previously, the lead stress evolved for timescales much
longer than experimental measurements [3]. In Section 5.4, it was shown that the new strain
hardening terms allowed for predictions of stable creep in tension. Previously, creep in tension
was unstable even at low stresses [24].

In order to upgrade Spectacular to a production model, verification should be significantly
improved. By deactivating the material clock and prescribing the strain and temperature histories,
analytical solutions for the viscoelastic equations in the model are possible. This was already
demonstrated in Section 5.5 for zero strain and a constant temperature rate. However, to get full
coverage of the viscoelastic equations, verification under the following conditions are also
recommended:

• fixed temperature and a constant I1 rate,

• constant temperature rate and a constant I1 rate, and

• fixed temperature and I1 with a constant eee rate (ideally checking constant rates for each exy,
eyz, and ezx to also check for indexing errors).

The strain hardening terms also involve considerable complexity, and therefore should be
analytically verified as well. This verification plan, if executed, would cover the majority of the
Spectacular model.
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6. USER GUIDE

Below is a template for specifying Spectacular parameters in Sierra/SM [11]. Square brackets
identify optional commands [OPTIONAL COMMAND] and parenthesis show default values for
optional parameters (DEFAULT VALUE). Comments begin with a #. The model parameters can be
specified using any self-consistent unit system, so long as absolute temperatures are used. If
CLOCK C1 and CLOCK C2 are not specified, then WLF C1 and WLF C2 must be specified instead.
The Arrhenius part of the shift factor function can be defined either by specifying the pair NMATCH
WLF ARH and CLOCK ARH2 or the pair TMATCH WLF ARH and EACT ON R. If no Arrhenius
parameters are defined, then a WLF shift factor equation is used. The parameter STRESS FREE
TEMPERATURE should be set equal to the initial temperature of the analysis and must be greater
than both θref −30 and θref −C2, or else the model will return an error during the property check.
This requirement on the starting temperature exists because the current model can only be
initialized in the equilibrium state, and any real glassy material is unlikely to be near equilibrium
at such a low temperature. This requirement may be revisited in the future. Each list of Prony
times (RELAX_TIMEr) must have the same length as the corresponding list of Prony weights (Fr).
If the Prony weights do not sum to one within a tolerance of 10−3, then they are normalized to
satisfy this requirement, i.e.,

if

(
Pr

∑
p=1

wold
rp

)
−1 > 10−3, then wrp =

wold
rp

∑
Pr
p=1 wold

rp
. (6.1)

BEGIN PARAMETERS FOR MODEL Spectacular
#
# Unit abbreviations
# t, time
# L, length
# T, temperature (Use an absolute scale)
# p, pressure
# E, energy
# -, dimensionless
#
### Elastic constants, set to glassy values ###
BULK MODULUS = <real> # p Kref

g

SHEAR MODULUS = <real> # p Gref
g

#
### Bulk modulus ###
BULK GLASSY 0 = <real> # p Kref

g

[BULK GLASSY 1 = <real>(0.0)] # p/T Kθ
g

[BULK GLASSY 2 = <real>(0.0)] # p KI1
g

[BULK GLASSY 3 = <real>(0.0)] # p KI2
g

[BULK GLASSY 4 = <real>(0.0)] # p KI3
g

BULK RUBBERY 0 = <real> # p Kref
∞

[BULK RUBBERY 1 = <real>(0.0)] # p/T Kθ
∞

[BULK RUBBERY 2 = <real>(0.0)] # p KI1
∞
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[BULK RUBBERY 3 = <real>(0.0)] # p KI2
∞

[BULK RUBBERY 4 = <real>(0.0)] # p KI3
∞

#
### Shear modulus ###
SHEAR GLASSY 0 = <real> # p Gref

g

[SHEAR GLASSY 1 = <real>(0.0)] # p/T Gθ
g

[SHEAR GLASSY 2 = <real>(0.0)] # p GI1
g

[SHEAR GLASSY 3 = <real>(0.0)] # p GI2
g

[SHEAR GLASSY 4 = <real>(0.0)] # p GI3
g

SHEAR RUBBERY 0 = <real> # p Gref
∞

[SHEAR RUBBERY 1 = <real>(0.0)] # p/T Gθ
∞

[SHEAR RUBBERY 2 = <real>(0.0)] # p GI1
∞

[SHEAR RUBBERY 3 = <real>(0.0)] # p GI2
∞

[SHEAR RUBBERY 4 = <real>(0.0)] # p GI3
∞

#
### Coefficient of Thermal Expansion ###
VOLCTE GLASSY 0 = <real> # 1/T αref

g

[VOLCTE GLASSY 1 = <real>(0.0)] # 1/T^2 αθ
g

VOLCTE RUBBERY 0 = <real> # 1/T αref
∞

[VOLCTE RUBBERY 1 = <real>(0.0)] # 1/T^2 αθ
∞

#
### Constant Volume Heat Capacity ###
[HEAT CAPACITY GLASSY 0 = <real>(0.0)] # E/(L^3*T) Cref

g

[HEAT CAPACITY GLASSY 1 = <real>(0.0)] # E/(L^3*T^2) Cθ
g

[HEAT CAPACITY RUBBERY 0 = <real>(0.0)] # E/(L^3*T) Cref
∞

[HEAT CAPACITY RUBBERY 1 = <real>(0.0)] # E/(L^3*T^2) Cθ
∞

#
### Clock parameters ###
REFERENCE TEMPERATURE = <real> # T θref
STRESS FREE TEMPERATURE = <real> # T θsf
[CLOCK C1 = <real>] # - C1
[CLOCK C2 = <real>] # T C2
[WLF C1 = <real>] # - Ĉ1
[WLF C2 = <real>] # T Ĉ2
[NMATCH WLF ARH = <real>(-1000.0)] # T Nmatch
[CLOCK ARH2 = <real>(-1.0)] # T A2
[TMATCH WLF ARH = <real>] # T θmatch
[EACT ON R = <real>] # T Ea/R
#
### N definition ###
[N THERMAL FUNCTION = <integer>(3)|4] # - T
[N VOLUME FUNCTION = <integer>(1)|3] # - V
[CLOCK C0 = <real>(1.0)] # - C0
[CLOCK C3 = <real>(0.0)] # T C3
[CLOCK C4 = <real>(0.0)] # T C4
#
### Relaxation functions ###
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RELAX_TIME1 = <real list> # t τ1p

F1 = <real list> # - w1p

RELAX_TIME2 = <real list> # t τ2p

F2 = <real list> # - w2p

RELAX_TIME3 = <real list> # t τ3p

F3 = <real list> # - w3p

[RELAX_TIME4 = <real list>(0.0)]# t τ4p

[F4 = <real list>(0.0)]# - w4p

END [PARAMETERS FOR MODEL Spectacular]

State variables available for output in Spectacular are listed in Tables 6-1 to 6-4. In those tables,
the names given in the TELETYPE font can be used to specify output requests in Sierra/SM.
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Table 6-1 State variables for the Spectacular model. Thermodynamic quantities.

Name Description

EPSXX εxx

EPSYY εyy

EPSZZ εzz

EPSXY εxy

EPSYZ εyz

EPSZX εzx

DETFINV J−1 = 1/detFFF

CLOCK_TEMP_N N

AEND a

LOGA loga

EPOT Epot

NPEC NPEC

LOGA_PEC logaPEC

PDISS_TOT J−1DTM

ENTROPIC_SRC J−1θH

HEATCAP_SRC J−1C

SRC_TOT J−1 (DTM +C +θH )

THERMAL_INERTIA J−1C̄

HELMHOLTZ J−1Ψ

ENTROPY J−1η

INTERNAL_ENERGY J−1E = J−1 (Ψ+θη)

ENTHALPY J−1χ = J−1 (Ψ+θη−ΣΣΣ : εεε)
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Table 6-2 State variables for the Spectacular model. Hereditary integrals.

Name Description

SF1I1

∫ t

0
f1 (t∗− s∗)

dI1

ds
ds

SF2HDEV_XX

∫ t

0
f2 (t∗− s∗)

dexx

ds
ds

SF2HDEV_YY

∫ t

0
f2 (t∗− s∗)

deyy

ds
ds

SF2HDEV_ZZ

∫ t

0
f2 (t∗− s∗)

dezz

ds
ds

SF2HDEV_XY

∫ t

0
f2 (t∗− s∗)

dexy

ds
ds

SF2HDEV_YZ

∫ t

0
f2 (t∗− s∗)

deyz

ds
ds

SF2HDEV_ZX

∫ t

0
f2 (t∗− s∗)

dezx

ds
ds

SF3I1

∫ t

0
f3 (t∗− s∗)

dI1

ds
ds

SF3T

∫ t

0
f3 (t∗− s∗)

dθ

ds
ds

SF4T

∫ t

0
f4 (t∗− s∗)

dθ

ds
ds

SF1I1I1

∫ t

0

∫ t

0
f1 (t∗− s∗, t∗−u∗)

dI1

ds
dI1

du
dsdu

SF2HDEVHDEV

∫ t

0

∫ t

0
f2 (t∗− s∗, t∗−u∗)

deee
ds

:
deee
du

dsdu

SF3I1T

∫ t

0

∫ t

0
f3 (t∗− s∗, t∗−u∗)

dI1

ds
dθ

du
dsdu

SF4TT

∫ t

0

∫ t

0
f4 (t∗− s∗, t∗−u∗)

dθ

ds
dθ

du
dsdu

65



Table 6-3 State variables for the Spectacular model. Hereditary integrals with ∂ fr(t∗)/∂t kernels.

Name Description

SDF3I1

∫ t

0

∂ f3 (t∗− s∗)
∂t

dI1

ds
ds

SDF4T

∫ t

0

∂ f4 (t∗− s∗)
∂t

dθ

ds
ds

SDF1I1I1

∫ t

0

∫ t

0

∂ f1 (t∗− s∗, t∗−u∗)
∂t

dI1

ds
dI1

du
dsdu

SDF2HDEVHDEV

∫ t

0

∫ t

0

∂ f2 (t∗− s∗, t∗−u∗)
∂t

deee
ds

:
deee
du

dsdu

SDF3I1T

∫ t

0

∫ t

0

∂ f3 (t∗− s∗, t∗−u∗)
∂t

dI1

ds
dθ

du
dsdu

SDF4TT

∫ t

0

∫ t

0

∂ f4 (t∗− s∗, t∗−u∗)
∂t

dθ

ds
dθ

du
dsdu

PDISS_I1I1 −J−1
(

KD (εεε,θ)

2

)∫ t

0

∫ t

0

∂ f1 (t∗− s∗, t∗−u∗)
∂t

dI1

ds
dI1

du
dsdu

PDISS_HdevHdev −J−1GD (εεε,θ)
∫ t

0

∫ t

0

∂ f2 (t∗− s∗, t∗−u∗)
∂t

deee
ds

:
deee
du

dsdu

PDISS_I1T J−1LD (εεε,θ)
∫ t

0

∫ t

0

∂ f3 (t∗− s∗, t∗−u∗)
∂t

dI1

ds
dθ

du
dsdu

PDISS_TT J−1
(

CD (θ)

2θref

)∫ t

0

∫ t

0

∂ f4 (t∗− s∗, t∗−u∗)
∂t

dθ

ds
dθ

du
dsdu
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Table 6-4 State variables for the Spectacular model. Hereditary integrals on single Prony terms.

Name Description

IF1I1_p JI1
1p

IF2HDEV_XX_p Jexx
2p

IF2HDEV_YY_p Jeyy
2p

IF2HDEV_ZZ_p Jezz
2p

IF2HDEV_XY_p Jexy
2p

IF2HDEV_YZ_p Jeyz
2p

IF2HDEV_ZX_p Jezx
2p

IF3I1_p JI1
3p

IF3T_p Jθ
3p

IF4T_p Jθ
4p

67





7. CONCLUSION

A comprehensive description of the Spectacular constitutive model has been presented, including
the thermo-mechanical theory, the numerical methods used to time-integrate the model, a few
verification tests, and a user guide that describes the syntax for using the model in Sierra/SM. It is
our hope that this document will serve as a useful reference for both users and developers of
Spectacular.

Despite the broad scope of this report, there are still some aspects of the Spectacular model theory
that were not included. When writing the report, priority was given to information of practical
importance, information specific to Spectacular, and information not clearly documented in other
sources. However, a complete theory guide for Spectacular should at least include the following
topics:

The derivation of the Helmholtz free energy. The viscous part of the free energy (Eqs. (2.6)
and (3.14)) is a second-order Fréchet expansion, which is a Taylor series for functionals [5].
The PEC [5, 6] and SPEC [7] papers give almost no information about the general form of
the Fréchet expansion; Only the final form of the free energy is given. However, more
details appear in an earlier paper from the Caruthers group [16] and the general form of the
Fréchet expansion appears in Theory of Functionals and of Integral and Integro-Differential
Equations [14]. Francophones can follow the references therin to discover the original work
of Maurice Fréchet. Once the free energy is written as a Fréchet expansion, first-order
terms in the expansion must vanish. This is because thermodynamic constraints require that
free energy is minimized at the equilibrium state [13, 16]. Finally, by considering a variety
of instantaneous perturbations in strain, temperature, or strain and temperature, the physical
meaning of the terms in the Fréchet expansion can be inferred (e.g., integral prefactors are
related to the bulk moduli, shear moduli, CTE, constant volume heat capacity). This final
step is thoroughly described in the PEC derivation paper [5].

A discussion of stress and strain measures in the model. PEC uses the Hencky strain and its
stress conjugate, while SPEC and Spectacular use the integrated unrotated rate of
deformation tensor. The integrated unrotated rate of deformation tensor approximates the
Hencky strain, but has a different conjugate stress tensor. More information on this can be
found in the SPEC paper [7].

A discussion on other forms for the relaxation function Prony sums. The form of the Prony
sum used to define the relaxation functions (Eq. (2.56)) is only one of at least three
possibilities. Other possible forms are discussed in the appendices of the PEC derivation
paper [5].

A more expansive verification section. Currently, only the thermal terms and the shift factor
function loga(N) have been rigorously verified. Ideally, volume and shear terms should also
be verified. Improved verification is necessary if the model is to achieve production status.

A calibration guide. Spectacular is challenging to calibrate, both with regards to planning the
experimental campaign and using the data to determine model parameters. Unfortunately, a
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simple “recipe” for calibrating Spectacular is not possible, as the calibration method is
specific to the available experimental data and material behaviors of interest.

A thoughtful review of efforts to validate the model. Currently, PEC, SPEC, and Spectacular
offer the most complete thermodynamic descriptions for glass-forming materials. Few, if
any, other models qualitatively predict volume relaxation, enthalpy relaxation, yield, strain
hardening, and physical aging all within a single model framework. Nevertheless, it has
proven challenging to generate a single model parameterization that represents disparate
thermo-mechanical behaviors of a single material. Extensive validation efforts can be found
for PEC and SPEC in Refs. [6, 28, 7, 24]. The body of validation studies for PEC-type
models can be augmented using recent work on Spectacular from the authors of this
report [1, 29, 26].

This list of additional content for an ideal Spectacular report also hints at future work. There are
clear practical benefits for increasing the extent of the model that is verified and producing a
calibration guide. Improving the verification makes the model production-worthy, and a
calibration guide makes the model more accessible to analysts. Validation is a higher risk, more
research focused effort, but is important for improving predictions of physical aging and pushing
Sandia to the forefront of models for glass-forming materials. Although Spectacular may be one
of the most comprehensive nonlinear viscoelastic models, it has still failed a number of validation
tests. The validation of several broad types of polymer constitutive models is discussed in
Ref. [24]. In that chapter, the SPEC model is referred to as the TVEM, and a number of issues
with the model are identified in a list. Through our own work, we have also identified a number of
challenging predictions for Spectacular, with some overlap with the issues identified in Ref. [24].
For example:

• For enthalpy recovery after cooling into the glass, a single parameterization for f4 does not
fit the response for all thermal histories. Generally, to predict enthalpy recovery after more
extensive physical aging (i.e., a larger heat capacity spike), the model requires a broader
and longer thermal relaxation function (i.e., smaller β4 and larger τ4) [1, 29]. However, the
analyses that lead to this finding were carried out using a single element, which neglects
heat diffusion and thermal gradients. It is possible that explicitly modeling thermal
gradients could improve the discrepancy between simulations and experiments when
predicting enthalpy recovery across multiple thermal histories with a single parameter set.
Alternatively, quantities like the total recovered enthalpy or fictive temperature could be
used for comparisons, as these quantities are insensitive to thermal gradients [30].

• After isothermal, no-load aging, the yield stress of glassy polymers increases [3].
Quantitatively predicting this phenomenon in Spectacular seems to require that the shear
relaxation function f2 relaxes out sooner than the thermal relaxation function f4. This is
contrary to experiments, which find that the relaxation time for shear is longer than the
volumetric or thermal relaxation times [31].

• Under isothermal aging with an applied load, the yield stress increases more quickly than
under isothermal, no-load aging [32]. The origin of this phenomenon is still not clear, but
Spectacular is able to predict it in a physical aging framework [26]. However, the
Spectacular predictions are generally too soft (the creep strain after aging under load is too
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high and the yield stress is too low). Comparisons between the simplified potential energy
the potential energy have indicated that the PEC model might predict a stiffer responses,
bringing predictions more in line with experiments. This may indicate that under more
complicated thermo-mechanical histories, the simplified potential energy is not suitable for
quantitative predictions. More investigations comparing the PEC and Spectacular responses
are needed to settle this issue.

A common theme is present for each of these challenging predictions: The model can be tuned to
represent a material’s response for almost any thermo-mechanical path, but a single calibration is
apparently unable to represent all thermo-mechanical paths. It has been suggested that the
predictive capabilities of a thermo-rheologically simple model, like Spectacular, are
limited [24].

The newly implemented strain hardening terms should also be validated. Currently, strain
hardening is incorporated using strain-dependent integral prefactors. However, it could also be
achieved using a higher order Fréchet expansion or new clock terms that slow relaxation at large
strains. Without comparing and validating these three methods, one cannot determine which
method is most physically realistic. In Ref. [33], it was found that both viscous and entropic
(rubber elastic) effects contributed to strain hardening, so it is possible that strain hardening
should be modeled as some combination of the three methods.

Although certain predictions are challenging for Spectacular, it is able to quantitatively predict an
impressive array of behaviors, hinting that the model is correctly representing some underlying
physics of glasses. For example, quantitative predictions emerge for the temperature sensitivity of
the yield stress or the change in the yield stress after isothermal aging without directly calibrating
the model to these responses. Hopefully, thoughtful study of the model form alongside creative
experiments will help to inform future model development and address outstanding issues with
the model.
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A. RELATING THE TANGENT AND SECANT COEFFICIENTS OF
THERMAL EXPANSION

To specify the thermal strain behavior in Spectacular, the user inputs parameters that define the
tangent volumetric CTEs, denoted as αL(θ), where L is used here as an index to represent either
the instantaneous or equilibrium limiting response, i.e., L ∈ {g,∞}. The tangent CTEs are defined
as

αL (θ) :=
dI1

dθ
, (A.1)

where I1(θ) is a function of temperature that defines either the instantaneous (L = g) or
equilibruim (L = ∞) volume strain under stress-free expansion. On the other hand, the model
theory for Spectacular is formulated using the secant volumetric CTEs, denoted as δL(θ). The
definition for the secant volumetric CTEs are

αL (θ) :=
dI1

dθ
, (A.2)

where L and I1 (θ) are defined as before. The user inputs parameters to define αL (θ), which are
converted to parameters defining δL (θ) within the Spectacular code. This appendix shows how
αL (θ) and δL (θ) are related.

For both the instantaneous and equilibrium tangent CTE, the user specifies the CTE at the
reference temperature αref

L and the slope of the CTE with temperature αθ
L. Therefore, the tangent

CTE function is

αL (θ) = α
ref
L +α

θ
L (θ−θsf) . (A.3)

The function can also be rewritten as an expansion about the stress-free temperature θsf , which is
the temperature at which there is zero thermal strain in the equilibrium state under stress-free
expansion;

αL (θ) = α
ref
L +α

θ
L (θ−θref)

= α
ref
L +α

θ
L (θ−θsf)+α

θ
L (θsf −θref)

= α
sf
L +α

θ
L (θ−θsf) , (A.4)

where

α
sf
L = α

ref
L +α

θ
∞ (θsf −θref) . (A.5)

The expression for δL (θ) in terms of the user-defined parameters (αref
L and αθ

L) is found by
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integrating αL (θ);

dI1

dθ
= αL (θ)

dI1 = αL (θ)dθ

I1 (θ) =
∫

θ

θsf

αL (θ)dθ

=
∫

θ

θsf

α
sf
L +α

θ
L (θ−θsf)dθ

=

(
α

sf
L +

1
2

α
θ
L (θ−θsf)

)
(θ−θsf)

I1 (θ)

θ−θsf
= α

sf
L +

1
2

α
θ
L (θ−θsf) (A.6)

δL(θ) = α
sf
L +

1
2

α
θ
L (θ−θsf) .

Finally, to maintain a consistent form between the functions defining all viscoelastic limits,
rewrite δL (θ) as a linear expansion about θref;

δL (θ) = α
sf
L +

1
2

α
θ
L (θ−θsf)

= α
sf
L +

1
2

α
θ
L (θ−θref)−

1
2

α
θ
L (θsf −θref)

= α
ref
L +α

θ
L (θsf −θref)+

1
2

α
θ
L (θ−θref)−

1
2

α
θ
L (θsf −θref)

= α
ref
L +

1
2

α
θ
L (θsf −θref)+

1
2

α
θ
L (θ−θref)

= δ
ref
L +δ

θ
L (θ−θref) ,

where

δ
ref
L = α

ref
L +

1
2

α
θ
L (θsf −θref) , (A.7)

δ
θ
L =

1
2

α
θ
L. (A.8)

Thus, Eqs. (2.34) and (2.35) have been proven.
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B. DERIVING THE SPECTACULAR CLOCK FROM THE PEC CLOCK

The material clock (i.e., the shift factor) in the PEC model [5, 6] depends on the potential energy
(i.e., configurational energy) Epot. The potential energy functional for PEC was derived from the
Helmholtz free energy functional and therefore had no free parameters. In the SPEC model [7],
the potential energy functional was greatly simplified, then divided by a heat capacity to yield the
term N, called the “clock temperature” in this report. As part of the simplification, many
hereditary integrals were neglected and coefficients to integrals were made into constant, free
parameters. Converting the coefficients to free parameters increased the flexibility of the
calibration process, but it also separated the coefficients from their physical meaning and removed
their dependence on temperature and strain. The material clock in Spectacular also depends on N,
but challenging physical aging predictions have motivated a re-evaluation of the assumptions used
to simplify Epot to N. Essentially, Spectacular has been able to predict yield stress evolution after
isothermal aging for any given aging temperature using a single parameter set, but a single
parameter set has not been able to predict isothermal yield stress evolution for more than one
aging temperature. It is an outstanding question if the implementation of temperature dependent
clock parameters would enably physical aging predictions accross multiple temperatures, and a
first step towards answering that question is studying the old PEC clock form.

The process for simplifying the potential energy is described in Adolf et al. 2009 [7], but the
derivation is somewhat challenging to follow given the limited length allowed in a journal article,
as well as differences in notation between PEC and SPEC6. This appendix thoroughly describes
the process for simplifying Epot into N, and also shows how to compare the shift factors based on
both measures in order to assess the importance of the terms that appear in Epot, but are neglected
in N.

B.1. Expression for the potential energy used in the PEC clock

The potential (i.e., configurational) energy is based on the internal energy E = Ψ+θη, but terms
related to changes in kinetic (i.e., thermal) energy are subtracted from the expression. The authors
of Refs. [5, 7] argue that when the material is subjected to an infinitely fast change in temperature,
the macromolecules do not have time to rearrange. Therefore, the change in internal energy from
an infinitely fast quench is due to a change in the kinetic energy rather than the potential energy.
If the memory and equilibrium terms in Ψ(t) are well balanced, then Epot can be made constant
for an infinitely fast quench by replacing equilibrium terms X∞ multiplied by temperature with the
negative difference terms −XD. The authors in Refs. [5, 7] are less clear about what should be
done for cross-terms involving both temperature and volume, but assert that the clock performs
better when the cross-terms are also switched from X∞ to −XD. Given these arguments, the
expression for Epot for the Spectacular model follows directly from the choice of Ψ(t) shown in

6Most of the parameters in PEC are written using either Ψ or ψ with a series of subscripts. While this notation
highlights the elegance of deriving the entire model from a Fréchet expansion about the free energy, it makes it
difficult to quickly parse the meaning of an equation when one is looking upon a sea of Ψs.
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Eq. (2.6) (recall that η(t) is also derived from Ψ(t), see Chapter 3 and Eq. (3.22)),

Epot =
1
2

KD (εεε,θ)
∫ t

0

∫ t

0
f1 (t∗− s∗, t∗−u∗)

dI1

ds
dI1

du
dsdu+

1
2

K∞ (εεε,θ) I2
1

+GD (εεε,θ)
∫ t

0

∫ t

0
f2 (t∗− s∗, t∗−u∗)

deee
ds

:
deee
du

dsdu+G∞ (εεε,θ)eee : eee

−LD (εεε,θ)
∫ t

0

∫ t

0
f3 (t∗− s∗, t∗−u∗)

dI1

ds
dθ

du
dsdu+LD (εεε,θ)(θ−θsf) I1

−Lref
D (θref −θsf) I1,ref

− CD (θ)

2θref

∫ t

0

∫ t

0
f4 (t∗− s∗, t∗−u∗)

dθ

ds
dθ

du
dsdu+

CD (θ)

2θref
(θ−θref)

2

+θ

[
LD (εεε,θ)

∫ t

0
f3 (t∗− s∗)

dI1

ds
ds−LD (εεε,θ) I1+

θref

θ
Lref

D I1,ref

+
CD (θ)

θref

∫ t

0
f4 (t∗− s∗)

dθ

ds
ds− CD (θ)

θref
(θ−θref)

− 1
2

Kθ
D

∫ t

0

∫ t

0
f1 (t∗− s∗, t∗−u∗)

dI1

ds
dI1

du
dsdu− 1

2
Kθ

∞I2
1

−Gθ
D

∫ t

0

∫ t

0
f2 (t∗− s∗, t∗−u∗)

deee
ds

:
deee
du

dsdu−Gθ
∞eee : eee

+
∂LD

∂θ

∫ t

0

∫ t

0
f3 (t∗− s∗, t∗−u∗)

dI1

ds
dθ

du
dsdu− ∂LD

∂θ
I1 (θ−θsf)

+
θref

θ

∂LD

∂θ

∣∣∣∣
εεε=000
θ=θref

I1,ref (θref −θsf)

+
Cθ

D
2θref

∫ t

0

∫ t

0
f4 (t∗− s∗, t∗−u∗)

dθ

ds
dθ

du
dsdu−

Cθ
D

2θref
(θ−θref)

2
]
.

(B.1)

In PEC, θref = θsf, but Spectacular allows them to be different. To maintain a shift factor of unity
at θref under stress-free, equilibrium conditions, Epot must equal zero at θref under stress-free,
equilibrium conditions. To accommodate this, the constant orange and magenta terms in Eq. (B.1)
were added.

Rather than writing every single term in Epot, as has been done in Eq. (B.1), it is simpler to show
how Epot has been modified from E = Ψ+θη. In this case, converting X∞ terms to −XD terms is
equivalent to subtracting Xg,

Epot = Ψ+θη

+Lg (εεε,θ)(θ−θsf) I1 −Lref
D (θref −θsf) I1,ref +

Cg (θ)

2θref
(θ−θref)

2

−θLg (εεε,θ) I1 +θrefLref
D I1,ref −θ

Cg (θ)

θref
(θ−θref)

−θ
∂Lg

∂θ
I1 (θ−θsf)+θref

∂LD

∂θ

∣∣∣∣
εεε=000
θ=θref

I1,ref (θref −θsf)−θ
Cθ

g

2θref
(θ−θref)

2 .

(B.2)
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The constant terms added to keep the equilibrium Epot equal to zero at θref are also shown in
Eq. (B.2).

B.2. Derivation of the simplified potential energy used in the Spectacular clock

In simplifying from PEC to SPEC, most of the terms in Eq. (B.1) were eliminated and integral
prefactors were approximated to be constant by choosing their value at θref and zero strain. In the
simplified potential energy, only the blue and magenta terms in Eq. (B.1) were kept, giving the
following expression for the simplified potential energy Ẽpot,

Ẽpot = Gref
D

∫ t

0

∫ t

0
f2 (t∗− s∗, t∗−u∗)

deee
ds

:
deee
du

dsdu

+Lref
D θref

∫ t

0
f3 (t∗− s∗)

dI1

ds
ds−Lref

D I1θref +Lref
D I1,refθref

+Cref
D

∫ t

0
f4 (t∗− s∗)

dθ

ds
ds−Cref

D (θ−θref) .

(B.3)

The rationale for the terms kept in Eq. (B.3) is described in Adolf et al. 2009 [7]. Briefly,
first-order integral terms were kept along with their corresponding equilibrium terms and the
second-order integral term involving the deviatoric strain was kept because yield cannot be
predicted using only the first-order integrals. The equilibrium term corresponding to the
second-order integral was not kept because Gref

D >> Gref
∞ .

For SPEC [7], the simplified potential energy was converted into a temperature-like quantity by
dividing by −Cref

D . In Spectacular, the simplified potential energy was converted into an absolute
temperature–like quantity by dividing by −Cref

D and adding θref;

N =
Ẽpot

−Cref
D

+θref, (B.4)

N =
Gref

D

−Cref
D

∫ t

0

∫ t

0
f2 (t∗− s∗, t∗−u∗)

deee
ds

:
deee
du

dsdu

+
Lref

D θref

Cref
D

[
I1 − I1,ref −

∫ t

0
f3 (t∗− s∗)

dI1

ds
ds
]

+θ−
∫ t

0
f4 (t∗− s∗)

dθ

ds
ds.

(B.5)

Converting N into an absolute temperature was done to facilitate explorations of other shift factor
models that depend on the absolute temperature, like the Arrhenius model.

Finally, Eq. (2.46) is recovered by changing the material parameter prefactors to free
parameters,

N = θ−
∫ t

0
f4 (t∗− s∗)

dθ

ds
ds+C3

[
I1 − I1,ref −

∫ t

0
f3 (t∗− s∗)

dI1

ds
ds
]

+C4

∫ t

0

∫ t

0
f2 (t∗− s∗, t∗−u∗)

deee
ds

:
deee
du

dsdu.
(B.6)
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This derivation shows that choosing V = 3, T = 4 in Eq. (2.46) are the only choices consistent
with the simplification procedure in Adolf et al. 2009 [7]. Based on the simplification procedure,
the parameters C3 and C4 should be

C3 =
Lref

D θref

Cref
D

, C4 =
Gref

D

−Cref
D

. (B.7)

However, the simplifications from Epot to N were so severe that Eq. (B.7) is not expected to hold
true [7]. However, Lref

D and Cref
D are both negative, so C3 should always be positive. Likewise, Gref

D
and −Cref

D are both positive, so C4 should always be positive. Note, that C3 and C4 would both
depend on the temperature and strain if no simplifications had been made when converting Epot to
N.

B.3. Method for comparing the Spectacular and PEC clocks

By subjecting Epot to the same transformation used to go from Ẽpot to N, a non-simplified clock
temperature NPEC can be derived for comparing the Spectacular and PEC clocks,

NPEC =
Epot

−Cref
D

+θref. (B.8)

Now, NPEC can be used as an argument in the Spectacular shift factor function, Eq. (2.43) to
determine a hypothetical PEC shift factor,

logaPEC = loga
(
NPEC)=


−

C1
(
NPEC −θref

)
C2 +NPEC −θref

, NPEC ≥ Nmatch,

A1 +
A2

NPEC , NPEC < Nmatch.

(B.9)

The quantities Epot, NPEC and logaPEC have been added as state variables in Spectacular. In no
way is logaPEC used in Spectacular. It is only calculated after the Newton-Raphson loop for
comparison to the converged loga using N. If, for a given thermo-mechanical history,
loga ≈ logaPEC, then the simplifications used to derive N are justified, and there is no need to
explore a clock using Epot. On the other hand, if loga and logaPEC are significantly different, then
it is possible that the Epot-based clock would enable more sophisticated physical aging
predictions using a single model calibration; predictions that have so far been elusive using the
N-based clock.
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C. LEIBNIZ INTEGRAL RULE FOR DIFFERENTIATION UNDER THE
INTEGRAL SIGN

The Leibniz rule for differentiation under the integral sign [34] is

d
dt

(∫ B(t)

A(t)
g(t,s)ds

)
= g(t,B(t)) · dB

dt
−g(t,A(t)) · dA

dt
+

∫ B(t)

A(t)

∂

∂t
g(t,s)ds. (C.1)

This rule is useful for taking time-derivatives of the single and double hereditary convolution
integrals that appear in Spectacular. Specifically, the following time-derivatives appear when
deriving the stress and entropy from the Helmholtz free energy (Chapter 3) or the establishing
numerical implementation of the model (Chapter 4):

d
dt

∫ t

0
fr (t∗− s∗)

dξ

ds
ds (C.2)

d
dt

∫ t

0

∫ t

0
fr (t∗− s∗, t∗−u∗)

dξ

ds
dφ

du
dsdu (C.3)

d
dt

∫ t

0
exp
(
−t∗− s∗

τrp

)
dξ

ds
ds =

d
dt

Jξ
rp. (C.4)

The symbol fr represents any of the relaxation functions and τrp is the p-th Prony term in
relaxation function r. Generic state variable histories are represented by ξ and φ, which in
Spectacular could be histories of the volume strain, deviatoric strain tensor, or temperature;
ξ, φ ∈ {I1, eee, θ}. The symbol Jξ

rp is used as shorthand for a hereditary convolution integral on the
p-th Prony term of the relaxation function r and the state variable history ξ.

When applying the Leibniz rule to any of Eqs. (C.2) to (C.4),

A(t) = 0,
dA
dt

= 0 (C.5)

B(t) = t,
dB
dt

= 1. (C.6)

Under these assumptions, the Liebniz rule simplifies to

d
dt

(∫ t

0
g(t,s)ds

)
= g(t, t)+

∫ t

0

∂

∂t
g(t,s)ds. (C.7)

In this appendix, expressions for Eqs. (C.2) to (C.4) are derived using Eq. (C.7).

C.1. Time-derivative of a single hereditary integral

To evaluate Eq. (C.2), set

g(t,s) = fr (t∗− s∗)
dξ

ds
. (C.8)

83



To evaluate the time-derivative of a single hereditary integral, combine Eqs. (C.7) and (C.8) and
simplify;

d
dt

∫ t

0
fr (t∗− s∗)

dξ

ds
ds = g(t, t)+

∫ t

0

∂

∂t
g(t,s)ds

= fr (t∗− t∗)
dξ

dt
+

∫ t

0

∂ fr (t∗− s∗)
∂t

dξ

ds
ds

= ξ̇+
∫ t

0

∂ fr (t∗− s∗)
∂t

dξ

ds
ds.

Therefore, the time-derivative of the single hereditary integral is

d
dt

∫ t

0
fr (t∗− s∗)

dξ

ds
ds = ξ̇+

∫ t

0

∂ fr (t∗− s∗)
∂t

dξ

ds
ds. (C.9)

C.2. Time-derivative of a double hereditary integral

To evaluate Eq. (C.3), set

g(t,s,u) =
∫ t

0
fr (t∗− s∗, t∗−u∗)

dξ

ds
dφ

du
du. (C.10)

To evaluate the time-derivative of a double hereditary integral, combine Eqs. (C.7) and (C.10) and
simplify;

d
dt

∫ t

0

∫ t

0
fr (t∗− s∗, t∗−u∗)

dξ

ds
dφ

du
dsdu = g(t, t,u)+

∫ t

0

(
d
dt

)
s
g(t,s,u)ds

=
∫ t

0
fr (t∗− t∗, t∗−u∗)

dξ

dt
dφ

du
du+

∫ t

0

(
d
dt

)
s

∫ t

0
fr (t∗− s∗, t∗−u∗)

dξ

ds
dφ

du
duds

=
dξ

dt

∫ t

0
fr (0, t∗−u∗)

dφ

du
du+

∫ t

0

(
d
dt

)
s

{∫ t

0
fr (t∗− s∗, t∗−u∗)

dφ

du
du
}

dξ

ds
ds

= ξ̇

∫ t

0
fr (t∗−u∗)

dφ

du
du+

∫ t

0

(
d
dt

)
s

{∫ t

0
fr (t∗− s∗, t∗−u∗)

dφ

du
du
}

dξ

ds
ds.

To evaluate the term in curly brackets ({}), recursively use the Liebniz rule, but keep s constant,
since its variation was already accounted for in the first application of the Liebniz rule. For the
second application of the Leibniz rule,

ĝ(t,s,u) = fr (t∗− s∗, t∗−u∗)
dφ

du
. (C.11)

Working through the combination of Eqs. (C.7) and (C.11) gives(
d
dt

)
s

∫ t

0
fr (t∗− s∗, t∗−u∗)

dφ

du
du = ĝ(t,s, t)+

∫ t

0

∂

∂t
ĝ(t,s,u)du

= fr (t∗− s∗, t∗− t∗)
dφ

dt
+

∫ t

0

∂

∂t
fr (t∗− s∗, t∗−u∗)

dφ

du
du

= φ̇ fr (t∗− s∗)+
∫ t

0

∂

∂t
fr (t∗− s∗, t∗−u∗)

dφ

du
du.
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Use this result to continue simplifying:
d
dt

∫ t

0

∫ t

0
fr (t∗− s∗, t∗−u∗)

dξ

ds
dφ

du
dsdu

= ξ̇

∫ t

0
fr (t∗−u∗)

dφ

du
du+

∫ t

0

{
φ̇ fr (t∗− s∗)+

∫ t

0

∂

∂t
fr (t∗− s∗, t∗−u∗)

dφ

du
du
}

dξ

ds
ds

= ξ̇

∫ t

0
fr (t∗−u∗)

dφ

du
du+ φ̇

∫ t

0
fr (t∗− s∗)

dξ

ds
ds+

∫ t

0

∫ t

0

∂ fr (t∗− s∗, t∗−u∗)
∂t

dξ

ds
dφ

du
dsdu.

Finally, the time-derivative of the double hereditary integral is
d
dt

∫ t

0

∫ t

0
fr (t∗− s∗, t∗−u∗)

dξ

ds
dφ

du
dsdu

= ξ̇

∫ t

0
fr (t∗− s∗)

dφ

ds
ds+ φ̇

∫ t

0
fr (t∗− s∗)

dξ

ds
ds

+
∫ t

0

∫ t

0

∂ fr (t∗− s∗, t∗−u∗)
∂t

dξ

ds
dφ

du
dsdu.

(C.12)

C.3. Time derivative of a Prony integral

For Eq. (C.4), start with the result for the single hereditary integral in Eq. (C.9), but plug in a
single Prony term relaxation function for fr;

fr (t∗− s∗) = exp
(
−t∗− s∗

τrp

)
. (C.13)

Combining Eqs. (C.9) and (C.13) gives
d
dt

∫ t

0
exp
(
−t∗− s∗

τrp

)
dξ

ds
ds = ξ̇+

∫ t

0

∂

∂t
exp
(
−t∗− s∗

τrp

)
dξ

ds
ds

= ξ̇+
∫ t

0
exp
(
−t∗− s∗

τrp

)
dξ

ds

[
∂

∂t

(
−t∗− s∗

τrp

)]
ds

= ξ̇+
∫ t

0
exp
(
−t∗− s∗

τrp

)
dξ

ds

[
dt∗

dt
∂

∂t∗

(
−t∗− s∗

τrp

)]
ds

= ξ̇+
∫ t

0
exp
(
−t∗− s∗

τrp

)
dξ

ds

[
− 1

aτrp

]
ds

= ξ̇−
(

1
aτrp

)∫ t

0
exp
(
−t∗− s∗

τrp

)
dξ

ds
ds

= ξ̇−
(

1
aτrp

)
Jξ

rp.

Therefore, the time-derivative of a single Prony term evaluates to
d
dt

Jξ
rp = ξ̇−

(
1

aτrp

)
Jξ

rp. (C.14)

Recall that

Jξ
rp :=

∫ t

0
exp
(
−t∗− s∗

τrp

)
dξ

ds
ds.
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D. CALIBRATION FOR 828/DEA USED TO SIMULATE YIELD STRESS
EVOLUTION AFTER ISOTHERMAL AGING

These parameters were used to predict yield stress evolution under isothermal aging, see Fig. 5-3.
The calibration was taken from Table 5-5 in Ref. [1], but values for Ea/R and θmatch were chosen
to get the model to reach an equilibrium yield stress at the same timescale observed in
experiments, approximately 1000 h.

#
# Material: 828/DEA
# Calibration: SAND2021-11193, Table 5-5 (DSC-focused)
#
# Table 5-5 only lists parameters that changed from the baseline 828dea
# calibration (baseline followed a traditional SPEC calibration approach,
# see 2009_adolf_a). The baseline 828dea parameters are listed in Table 5-1.
#
# Some parameters were not re-calibrated in sand2021-11193, so are taken from
# the literature. These parameters are marked here (and in Table 5-1).

# REFS
# 2009_adolf_a: A simplified potential energy clock model for glassy polymers
# 2004_adolf_a: Extensive validation of a thermodynamically consistent,
# nonlinear viscoelastic model for glassy polymers.

# NOTE: Set stress free-temperature based on application

begin property specification for material 828dea

density = 1176 # kg/m^3 (2004_adolf_a, Table 4)
thermal log strain function = sierra_constant_function_zero

begin parameters for model spectacular
bulk modulus = 4.9E9 # Pa (2009_adolf_a, Table 3)
shear modulus = 0.9E9 # Pa (2009_adolf_a, Table 3)
bulk glassy 0 = 4.9E9 # Pa (2009_adolf_a, Table 3)
bulk glassy 1 = -12.0E6 # Pa/K (2009_adolf_a, Table 3)
bulk rubbery 0 = 3.2E9 # Pa (2009_adolf_a, Table 3)
bulk rubbery 1 = -12.0E6 # Pa/K (2009_adolf_a, Table 3)
shear glassy 0 = 0.9E9 # Pa (2009_adolf_a, Table 3)
shear glassy 1 = -4.2E6 # Pa/K (2009_adolf_a, Table 3)
shear rubbery 0 = 4.5E6 # Pa (2009_adolf_a, Table 3)
shear rubbery 1 = 0 # Pa/K (2009_adolf_a, Table 3)
volcte glassy 0 = 220E-6 # K^-1
volcte glassy 1 = 0 # K^-2
volcte rubbery 0 = 562E-6 # K^-1
volcte rubbery 1 = 0.7E-6 # K^-2
heat capacity glassy 0 = 1172000 # J/(m^3*K)
heat capacity glassy 1 = 2160 # J/(m^3*K^2)
heat capacity rubbery 0 = 1381000 # J/(m^3*K)
heat capacity rubbery 1 = 690 # J/(m^3*K^2)
reference temperature = 348.15 # K
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wlf c1 = 12.6 # None
wlf c2 = 40.1 # K
clock c1 = 0 # None
clock c2 = 0 # K
clock c3 = 1000 # K (2009_adolf_a, Table 3)
clock c4 = 9900 # K
stress free temperature = {stress_free_temperature} # K
# === NEW PARAMETERS ADDED AFTER SAND2021-11193 ===
clock c0 = 1 # None
N_THERMAL_FUNCTION = 3
N_VOLUME_FUNCTION = 1
TMATCH_WLF_ARH = 344.15
EACT_ON_R = 15000 # K
# ===

#RELAX_TIMEi terms have units of s
#Fi terms are unitless

# Spectrum ID 1 (volumetric)
# Prony series fit to KWW parameters:
# logkwwtau_3 = 1.612368827, kwwbeta_3 = 0.2565190905
# kwwtau_3 = 40.96083742

# Spectrum ID = 1
RELAX_TIME1 = 2.71804127e-10 8.91933354e-10 2.92690592e-09 9.60472913e

-09 3.15182053e-08 1.03427931e-07 3.39401844e-07 1.11375728e-06
3.65482776e-06 1.19934264e-05 3.93567866e-05 1.29150470e-04

4.23811121e-04 1.39074884e-03 4.56378384e-03 1.49761929e-02
4.91448239e-02 1.61270206e-01 5.29212995e-01 1.73662824e+00
5.69879739e+00 1.87007737e+01 6.13671472e+01 2.01378125e+02
6.60828327e+02 2.16852788e+03 7.11608896e+03 2.33516583e+04
7.66291636e+04

F1 = 4.53538570e-04 4.47517764e-04 5.96311960e-04 8.51522565e-04
1.11972073e-03 1.53917871e-03 2.07119589e-03 2.81153266e-03
3.79826868e-03 5.13524205e-03 6.92818409e-03 9.33292425e-03
1.25392707e-02 1.67902812e-02 2.23776424e-02 2.96328821e-02
3.88977547e-02 5.04377753e-02 6.43099029e-02 8.00704119e-02
9.64399649e-02 1.10750090e-01 1.18853727e-01 1.15487239e-01
9.72100198e-02 6.59384129e-02 3.27717625e-02 9.87267126e-03
1.69787997e-03

# Spectrum ID 2 (shear)
# Prony series fit to KWW parameters:
# logkwwtau_2 = 0.09691, kwwbeta_2 = 0.23
# kwwtau_2 = 1.25

# Spectrum ID = 2
RELAX_TIME2 = 4.26536725e-13 1.60522752e-12 6.04111025e-12 2.27351031e

-11 8.55612445e-11 3.22001028e-10 1.21181807e-09 4.56055387e-09
1.71631800e-08 6.45918795e-08 2.43084959e-07 9.14825482e-07

3.44285252e-06 1.29568248e-05 4.87616902e-05 1.83509654e-04
6.90619890e-04 2.59907761e-03 9.78136384e-03 3.68111665e-02
1.38535075e-01 5.21362645e-01 1.96209521e+00 7.38414545e+00
2.77894792e+01 1.04582874e+02 3.93586995e+02 1.48122456e+03
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5.57443777e+03
F2 = 5.12254889e-04 3.88190023e-04 6.72038171e-04 8.37774138e-04

1.17447444e-03 1.56963583e-03 2.13750996e-03 2.88628165e-03
3.90693817e-03 5.27581435e-03 7.11793124e-03 9.58208471e-03
1.28660633e-02 1.72116024e-02 2.29110557e-02 3.02896794e-02
3.96734709e-02 5.12985678e-02 6.51671709e-02 8.07637657e-02
9.67191410e-02 1.10330692e-01 1.17537228e-01 1.13432247e-01
9.50885713e-02 6.46967591e-02 3.27688423e-02 1.03280657e-02
2.00345285e-03

# Spectrum ID 3 (thermal-volumetric)
# Prony series fit to KWW parameters:
# logkwwtau_3 = 2.949326293, kwwbeta_3 = 0.2192070888
# kwwtau_3 = 889.8694412
# Spectrum ID = 3

RELAX_TIME3 = 7.38835954e-11 2.96802486e-10 1.19230412e-09 4.78968065e
-09 1.92409305e-08 7.72939643e-08 3.10502495e-07 1.24733930e-06

5.01076596e-06 2.01290663e-05 8.08617513e-05 3.24834879e-04
1.30491483e-03 5.24205628e-03 2.10581974e-02 8.45942226e-02
3.39828827e-01 1.36514797e+00 5.48402265e+00 2.20302158e+01
8.84989798e+01 3.55514875e+02 1.42816139e+03 5.73715787e+03
2.30471014e+04 9.25839755e+04 3.71924971e+05 1.49408343e+06
6.00197748e+06

F3 = 5.30681676e-04 3.75188923e-04 6.91493931e-04 8.40255308e-04
1.19093541e-03 1.58508713e-03 2.16177072e-03 2.91724436e-03
3.94932932e-03 5.33211426e-03 7.19302015e-03 9.68121661e-03
1.29957746e-02 1.73790259e-02 2.31229622e-02 3.05507512e-02
3.99820394e-02 5.16416058e-02 6.55102494e-02 8.10447982e-02
9.68409736e-02 1.10183832e-01 1.17042559e-01 1.12647771e-01
9.42579923e-02 6.41817675e-02 3.27126208e-02 1.04778267e-02
2.12001456e-03

# Spectrum ID 4 (thermal)
# Prony series fit to KWW parameters:
# logkwwtau_4 = 2.949326293, kwwbeta_4 = 0.2192070888
# kwwtau_4 = 889.8694412
# Spectrum ID = 4

RELAX_TIME4 = 7.38835954e-11 2.96802486e-10 1.19230412e-09 4.78968065e
-09 1.92409305e-08 7.72939643e-08 3.10502495e-07 1.24733930e-06

5.01076596e-06 2.01290663e-05 8.08617513e-05 3.24834879e-04
1.30491483e-03 5.24205628e-03 2.10581974e-02 8.45942226e-02
3.39828827e-01 1.36514797e+00 5.48402265e+00 2.20302158e+01
8.84989798e+01 3.55514875e+02 1.42816139e+03 5.73715787e+03
2.30471014e+04 9.25839755e+04 3.71924971e+05 1.49408343e+06
6.00197748e+06

F4 = 5.30681676e-04 3.75188923e-04 6.91493931e-04 8.40255308e-04
1.19093541e-03 1.58508713e-03 2.16177072e-03 2.91724436e-03
3.94932932e-03 5.33211426e-03 7.19302015e-03 9.68121661e-03
1.29957746e-02 1.73790259e-02 2.31229622e-02 3.05507512e-02
3.99820394e-02 5.16416058e-02 6.55102494e-02 8.10447982e-02
9.68409736e-02 1.10183832e-01 1.17042559e-01 1.12647771e-01
9.42579923e-02 6.41817675e-02 3.27126208e-02 1.04778267e-02
2.12001456e-03
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end parameters for model spectacular

end property specification for material 828dea
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E. CALIBRATION FOR 828/DEA USED TO SIMULATE CREEP

These parameters were used to simulate creep, see Figs. 5-4 and 5-5. The parameters were
generated using data on 828/DEA from Ref. [1], but the parameters are different from the
calibrations in Ref. [1] due to the use of the new FY23 model features.

#
# Material: 828/DEA
#
# Calibration: FY23Q4-ARH-SLOWCOOLDSCF4
#
# Calibrated by: Ken Cundiff (kcundif@sandia.gov), FY23

begin material 828_dea

density = 1176 # kg/m^3 (2004 Adolf et al., Table 4)
thermal log strain function = sierra_constant_function_zero

begin parameters for model spectacular
bulk modulus = 4.9E9 # Pa (2009 Adolf et al., Table 3)
shear modulus = 0.800E9 # Pa

### Bulk modulus ###
bulk glassy 0 = 4.9E9 # Pa (2009 Adolf et al., Table 3)
bulk glassy 1 = -12.0E6 # Pa/K (2009 Adolf et al., Table 3)
bulk rubbery 0 = 3.2E9 # Pa (2009 Adolf et al., Table 3)
bulk rubbery 1 = -12.0E6 # Pa/K (2009 Adolf et al., Table 3)

### Shear modulus ###
shear glassy 0 = 0.800E9 # Pa
shear glassy 1 = -3.553E6 # Pa/K
shear glassy 2 = {shear_glassy_I1} # Pa
shear glassy 3 = {shear_glassy_I2} # Pa
shear glassy 4 = {shear_glassy_I3} # Pa
shear rubbery 0 = 6.000E6 # Pa
shear rubbery 1 = 33.399E3 # Pa/K
shear rubbery 2 = {shear_rubbery_I1} # Pa
shear rubbery 3 = {shear_rubbery_I2} # Pa
shear rubbery 4 = {shear_rubbery_I3} # Pa

### CTE ###
volcte glassy 0 = 236E-6 # K^-1
volcte glassy 1 = 0.0E-6 # K^-2
volcte rubbery 0 = 546E-6 # K^-1
volcte rubbery 1 = 0.8E-6 # K^-2

### Heat capacity (constant volume) ###
heat capacity glassy 0 = 1180000 # J/(m^3*K)
heat capacity glassy 1 = 200 # J/(m^3*K^2)
heat capacity rubbery 0 = 1360000 # J/(m^3*K)
heat capacity rubbery 1 = -500 # J/(m^3*K^2)

### Clock parameters ###
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reference temperature = 348.15 # K (75C)
stress free temperature = {stress_free_temperature} # K
wlf c1 = 12.6 # None
wlf c2 = 40.1 # K
tmatch wlf arh = 344.15 # K (71C)
eact on r = 137000 # K

### N Definition (aka clock temperature or potential energy, depending on how you
want to look at it)

n thermal function = 4 # relaxation function index
n volume function = 3 # relaxation function index
clock c3 = 1000 # K (2009 Adolf et al., Table 3)
clock c4 = 7500 # K

### Not specified ###
#clock c0 = 1.0 # None (Default)
#clock c1 = 0 # None ("wlf c1" is defined instead)
#clock c2 = 0 # K ("wlf c2" is defined instead)
#nmatch wlf arh = 0 # K ("tmatch wlf arh" is defined instead)
#clock arh2 = 0 # K ("eact on r" is defined instead)

#RELAX_TIMEi terms have units of s
#Fi terms are unitless

# Spectrum ID 1 (volumetric)
# Prony series fit to KWW parameters:
# logkwwtau_1 = 2.314342201, kwwbeta_1 = 0.3088857304
# kwwtau_1 = 206.225422 s
# Spectrum ID = 1
##KWW Relaxation Function with
##KWW_tau = 2.062254e+02, KWW_beta = 3.088857e-01
##and 28 prony terms in use
##Prony L2 Projection Error = 1.885753e-04
##

RELAX_TIME1 = 1.07473113e-07 7.73512869e-07 2.07515911e-06 5.56717996e
-06 1.49354777e-05 4.00684901e-05 1.07494646e-04 2.88383689e-04

7.73667853e-04 2.07557490e-03 5.56829543e-03 1.49384703e-02
4.00765184e-02 1.07516184e-01 2.88441471e-01 7.73822869e-01
2.07599077e+00 5.56941111e+00 1.49414634e+01 4.00845483e+01
1.07537727e+02 2.88499265e+02 7.73977916e+02 2.07640673e+03
5.57052703e+03 1.49444571e+04 4.00925798e+04 1.07559274e+05

F1 = 5.08481728e-04 1.25902139e-03 1.08761548e-04 1.58934102e-03
1.07799727e-03 2.19398822e-03 2.48961773e-03 3.67959536e-03
4.77618675e-03 6.57793830e-03 8.78901973e-03 1.18789960e-02
1.59053450e-02 2.12779681e-02 2.82658857e-02 3.72918932e-02
4.86553987e-02 6.25482131e-02 7.86780574e-02 9.59640051e-02
1.11831065e-01 1.21908367e-01 1.20136742e-01 1.01768903e-01
6.82355711e-02 3.21365464e-02 8.58427464e-03 1.07547603e-03

# Spectrum ID 2 (shear)
##KWW Relaxation Function with
##KWW_tau = 1.250000e+00, KWW_beta = 2.300000e-01
##and 29 prony terms in use
##Prony L2 Projection Error = 4.168628e-04
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##
RELAX_TIME2 = 4.26536725e-13 1.60522752e-12 6.04111025e-12 2.27351031e

-11 8.55612445e-11 3.22001028e-10 1.21181807e-09 4.56055387e-09
1.71631800e-08 6.45918795e-08 2.43084959e-07 9.14825482e-07

3.44285252e-06 1.29568248e-05 4.87616902e-05 1.83509654e-04
6.90619890e-04 2.59907761e-03 9.78136384e-03 3.68111665e-02
1.38535075e-01 5.21362645e-01 1.96209521e+00 7.38414545e+00
2.77894792e+01 1.04582874e+02 3.93586995e+02 1.48122456e+03
5.57443777e+03

F2 = 5.12254889e-04 3.88190023e-04 6.72038171e-04 8.37774138e-04
1.17447444e-03 1.56963583e-03 2.13750996e-03 2.88628165e-03
3.90693817e-03 5.27581435e-03 7.11793124e-03 9.58208471e-03
1.28660633e-02 1.72116024e-02 2.29110557e-02 3.02896794e-02
3.96734709e-02 5.12985678e-02 6.51671709e-02 8.07637657e-02
9.67191410e-02 1.10330692e-01 1.17537228e-01 1.13432247e-01
9.50885713e-02 6.46967591e-02 3.27688423e-02 1.03280657e-02
2.00345285e-03

# Spectrum ID 3 (thermal-volumetric)
# Prony series fit to KWW parameters:
# logkwwtau_3 = 2.314342201, kwwbeta_3 = 0.3088857304
# kwwtau_3 = 206.225422 s
# Spectrum ID = 3
##KWW Relaxation Function with
##KWW_tau = 2.062254e+02, KWW_beta = 3.088857e-01
##and 28 prony terms in use
##Prony L2 Projection Error = 1.885753e-04
##

RELAX_TIME3 = 1.07473113e-07 7.73512869e-07 2.07515911e-06 5.56717996e
-06 1.49354777e-05 4.00684901e-05 1.07494646e-04 2.88383689e-04

7.73667853e-04 2.07557490e-03 5.56829543e-03 1.49384703e-02
4.00765184e-02 1.07516184e-01 2.88441471e-01 7.73822869e-01
2.07599077e+00 5.56941111e+00 1.49414634e+01 4.00845483e+01
1.07537727e+02 2.88499265e+02 7.73977916e+02 2.07640673e+03
5.57052703e+03 1.49444571e+04 4.00925798e+04 1.07559274e+05

F3 = 5.08481728e-04 1.25902139e-03 1.08761548e-04 1.58934102e-03
1.07799727e-03 2.19398822e-03 2.48961773e-03 3.67959536e-03
4.77618675e-03 6.57793830e-03 8.78901973e-03 1.18789960e-02
1.59053450e-02 2.12779681e-02 2.82658857e-02 3.72918932e-02
4.86553987e-02 6.25482131e-02 7.86780574e-02 9.59640051e-02
1.11831065e-01 1.21908367e-01 1.20136742e-01 1.01768903e-01
6.82355711e-02 3.21365464e-02 8.58427464e-03 1.07547603e-03

# Spectrum ID 4 (thermal)
# Prony series fit to KWW parameters:
# logkwwtau_4 = 2.516771986, kwwbeta_4 = 0.2304083554
# kwwtau_4 = 328.679022 s
# Spectrum ID = 4
##KWW Relaxation Function with
##KWW_tau = 3.286790e+02, KWW_beta = 2.304084e-01
##and 29 prony terms in use
##Prony L2 Projection Error = 4.123126e-04
##
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RELAX_TIME4 = 1.18008619e-10 4.43071472e-10 1.66354229e-09 6.24588386e
-09 2.34506002e-08 8.80468902e-08 3.30578100e-07 1.24117820e-06

4.66008884e-06 1.74966238e-05 6.56922766e-05 2.46646167e-04
9.26049986e-04 3.47691832e-03 1.30543288e-02 4.90133746e-02
1.84024083e-01 6.90931068e-01 2.59414818e+00 9.73990763e+00
3.65691526e+01 1.37301397e+02 5.15507530e+02 1.93550845e+03
7.26699950e+03 2.72844490e+04 1.02441339e+05 3.84623048e+05
1.44409367e+06

F4 = 5.11499762e-04 3.88794968e-04 6.71191926e-04 8.37754519e-04
1.17379887e-03 1.56907635e-03 2.13656751e-03 2.88511187e-03
3.90531621e-03 5.27367189e-03 7.11506702e-03 9.57830728e-03
1.28611186e-02 1.72052214e-02 2.29029795e-02 3.02797311e-02
3.96617162e-02 5.12855077e-02 6.51541273e-02 8.07531226e-02
9.67146276e-02 1.10336516e-01 1.17556402e-01 1.13462500e-01
9.51203606e-02 6.47161468e-02 3.27703676e-02 1.03220048e-02
1.99893533e-03

end parameters for model spectacular

end material 828_dea
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